data(mafragh)
if (require(tripack, quietly=TRUE)) {
par(mfrow = c(2,1))
provi <- neighbours(tri.mesh(mafragh$xy))
provi.neig <- neig(list = provi)
s.label(mafragh$xy, neig = provi.neig, inc = FALSE,
addax = FALSE, clab = 0, cnei = 2)
dist <- apply(provi.neig, 1, function(x)
sqrt(sum((mafragh$xy[x[1],] - mafragh$xy[x[2],])^2)))
#hist(dist, nclass = 50)
mafragh.neig <- neig(edges = provi.neig[dist<50,])
s.label(mafragh$xy, neig = mafragh.neig, inc = FALSE,
addax = FALSE, clab = 0, cnei = 2)
par(mfrow = c(1,1))
data(irishdata)
irish.neig <- neig(area = irishdata$area)
summary(irish.neig)
print(irish.neig)
s.label(irishdata$xy, neig = irish.neig, cneig = 3,
area = irishdata$area, clab = 0.8, inc = FALSE)
irish.scores <- scores.neig(irish.neig)
par(mfrow = c(2,3))
for (i in 1:6) s.value(irishdata$xy, irish.scores[,i],
inc = FALSE, grid = FALSE, addax = FALSE,
neig = irish.neig,
csi = 2, cleg = 0, sub = paste("Eigenvector n�",i), csub = 2)
par(mfrow = c(1,1))
a.neig <- neig(n.circle = 16)
a.scores <- scores.neig(a.neig)
xy <- cbind.data.frame(cos((1:16) * pi / 8), sin((1:16) * pi / 8))
par(mfrow = c(4,4))
for (i in 1:15) s.value(xy, a.scores[,i], neig = a.neig,
csi = 3, cleg = 0)
par(mfrow = c(1,1))
a.neig <- neig(n.line = 28)
a.scores <- scores.neig(a.neig)
par(mfrow = c(7,4))
par(mar = c(1.1,2.1,0.1,0.1))
for (i in 1:27) barplot(a.scores[,i], col = grey(0.8))
}
par(mfrow = c(1,1))
if (require(maptools, quiet = TRUE) & require(spdep, quiet = TRUE)) {
data(columbus)
par(mfrow = c(2,1))
par(mar = c(0.1,0.1,0.1,0.1))
plot(col.gal.nb, coords)
s.label(data.frame(coords), neig = neig(list = col.gal.nb),
inc = FALSE, clab = 0.6, cneig = 1)
par(mfrow = c(1,1))
data(mafragh)
maf.rel <- relativeneigh(as.matrix(mafragh$xy))
maf.rel <- graph2nb(maf.rel)
s.label(mafragh$xy, neig = neig(list = maf.rel), inc = FALSE,
clab = 0, addax = FALSE, cne = 1, cpo = 2)
par(mfrow = c(2,2))
w <- matrix(runif(100), 50, 2)
x.gab <- gabrielneigh(w)
x.gab <- graph2nb(x.gab)
s.label(data.frame(w), neig = neig(list = x.gab), inc = FALSE,
clab = 0, addax = FALSE, cne = 1, cpo = 2, sub = "relative")
x.rel <- relativeneigh(w)
x.rel <- graph2nb(x.rel)
s.label(data.frame(w), neig = neig(list = x.rel), inc = FALSE,
clab = 0, addax = FALSE, cne = 1, cpo = 2, sub = "Gabriel")
k1 <- knn2nb(knearneigh(w))
s.label(data.frame(w), neig = neig(list = k1), inc = FALSE,
clab = 0, addax = FALSE, cne = 1, cpo = 2, sub = "k nearest neighbours")
all.linked <- max(unlist(nbdists(k1, w)))
z <- dnearneigh(w, 0, all.linked)
s.label(data.frame(w), neig = neig(list = z), inc = FALSE,
clab = 0, addax = FALSE, cne = 1, cpo = 2,
sub = "Neighbourhood contiguity by distance")
}
par(mfrow = c(1,1))
Run the code above in your browser using DataLab