Learn R Programming

ade4 (version 1.2-2)

westafrica: Freshwater fish zoogeography in west Africa

Description

This data set contains informations about faunal similarities between river basins in West africa.

Usage

data(westafrica)

Arguments

source

Data provided by B. Hugueny hugueny@biomserv.univ-lyon1.fr.

Paugy, D., Traor�, K. and Diouf, P.F. (1994) Faune ichtyologique des eaux douces d'Afrique de l'Ouest. In Diversit� biologique des poissons des eaux douces et saum�tres d'Afrique. Synth�ses g�ographiques, Teugels, G.G., Gu�gan, J.F. and Albaret, J.J. (Editors). Annales du Mus�e Royal de l'Afrique Centrale, Zoologie, N� 275, Tervuren, Belgique, 35--66.

Hugueny, B. (1989) Biog�ographie et structure des peuplements de Poissons d'eau douce de l'Afrique de l'ouest : approches quantitatives. Th�se de doctorat, Universit� Paris 7.

References

Hugueny, B., and L�v�que, C. (1994) Freshwater fish zoogeography in west Africa: faunal similarities between river basins. Environmental Biology of Fishes, 39, 365--380.

Examples

Run this code
data(westafrica)

s.label(westafrica$cadre, xlim = c(30,500), ylim = c(50,290),
    cpoi = 0, clab = 0, grid = FALSE, addax = 0)
old.par <- par(no.readonly = TRUE)
par(mar = c(0.1, 0.1, 0.1, 0.1))
rect(30,0,500,290)
polygon(westafrica$atlantic,col = "lightblue")
points(westafrica$riv.xy, pch = 20, cex = 1.5)
apply(westafrica$lines, 1, function(x) segments(x[1], x[2], x[3],
    x[4], lwd = 1))
apply(westafrica$riv.xy,1, function(x) segments(x[1], x[2], x[3],
    x[4], lwd = 1))
text(c(175,260,460,420), c(275,200,250,100), c("Senegal","Niger",
    "Niger","Volta"))
par(srt = 270)
text(westafrica$riv.xy$x2, westafrica$riv.xy$y2-10, 
    westafrica$riv.names, adj = 0, cex = 0.75)
par(old.par)
rm(old.par)

# multivariate analysis
afri.w <- data.frame(t(westafrica$tab))
afri.dist <- dist.binary(afri.w,1)
afri.pco <- dudi.pco(afri.dist, scan = FALSE, nf = 3)
par(mfrow = c(3,1))
barplot(afri.pco$li[,1])
barplot(afri.pco$li[,2])
barplot(afri.pco$li[,3])

if (require(spdep, quiet = TRUE)){
    #multivariate spatial analysis
    afri.neig <- neig(n.line = 33)
    afri.nb <- neig2nb(afri.neig)
    afri.listw <- nb2listw(afri.nb)
    afri.ms <- multispati(afri.pco, afri.listw, scan = FALSE,
        nfposi = 6, nfnega = 0)
    par(mfrow = c(3,1))
    barplot(afri.ms$li[,1])
    barplot(afri.ms$li[,2])
    barplot(afri.ms$li[,3])

    par(mfrow = c(2,2))
    s.label(afri.ms$li, clab = 0.75, cpoi = 0, neig = afri.neig,
       cneig = 1.5)
    s.value(afri.ms$li, afri.ms$li[,3])
    s.value(afri.ms$li, afri.ms$li[,4])
    s.value(afri.ms$li, afri.ms$li[,5])
    summary(afri.ms)
}

par(mfrow = c(1,1))
library(mva)
plot(hclust(afri.dist,"ward"),h=-0.2)

Run the code above in your browser using DataLab