Learn R Programming

ade4 (version 1.4-3)

dpcoa: Double principal coordinate analysis

Description

Performs a double principal coordinate analysis

Usage

dpcoa (df, dis = NULL, scannf = TRUE, nf = 2, full = FALSE, tol = 1e-07)
plot.dpcoa (x, xax = 1, yax = 2, option = 1:4, csize = 2, ...)
print.dpcoa (x, ...)

Arguments

df
a data frame with elements as rows, samples as columns and abundance or presence-absence as entries
dis
an object of class dist containing the distances between the elements.
scannf
a logical value indicating whether the eigenvalues bar plot should be displayed
nf
if scannf is FALSE, an integer indicating the number of kept axes
full
a logical value indicating whether all non null eigenvalues should be kept
tol
a tolerance threshold for null eigenvalues (a value less than tol times the first one is considered as null)
x
an object of class dpcoa
xax
the column number for the x-axis
yax
the column number for the y-axis
option
the function plot.dpcoa produces four graphs, option allows us to choose only some of them
csize
a size coefficient for symbols
...
... further arguments passed to or from other methods

Value

  • Returns a list of class dpcoa containing:
  • callcall
  • nfa numeric value indicating the number of kept axes
  • w1a numeric vector containing the weights of the elements
  • w2a numeric vector containing the weights of the samples
  • eiga numeric vector with all the eigenvalues
  • RaoDiva numeric vector containing diversities within samples
  • RaoDisan object of class dist containing the dissimilarities between samples
  • RaoDecodiva data frame with the decomposition of the diversity
  • l1a data frame with the coordinates of the elements
  • l2a data frame with the coordinates of the samples
  • c1a data frame with the scores of the principal axes of the elements

References

Pavoine, S., Dufour, A.B. and Chessel, D. (2004) From dissimilarities among species to dissimilarities among communities: a double principal coordinate analysis. Journal of Theoretical Biology, 228, 523--537.

Examples

Run this code
data(humDNAm)
dpcoahum <- dpcoa(humDNAm$samples, sqrt(humDNAm$distances), scan = FALSE, nf = 2)
dpcoahum
plot(dpcoahum, csize = 1.5)
data(ecomor)
dtaxo <- dist.taxo(ecomor$taxo)
dpcoaeco <- dpcoa(ecomor$habitat, dtaxo, scan = FALSE, nf = 2)
dpcoaeco
plot(dpcoaeco, csize = 1.5)

Run the code above in your browser using DataLab