Learn R Programming

ade4 (version 1.5-2)

pcaivortho: Principal Component Analysis with respect to orthogonal instrumental variables

Description

performs a Principal Component Analysis with respect to orthogonal instrumental variables.

Usage

pcaivortho(dudi, df, scannf = TRUE, nf = 2)
## S3 method for class 'pcaivortho':
summary(object, \dots)

Arguments

dudi
a duality diagram, object of class dudi
df
a data frame with the same rows
scannf
a logical value indicating whether the eigenvalues bar plot should be displayed
nf
if scannf FALSE, an integer indicating the number of kept axes
object
an object of class pcaiv
...
further arguments passed to or from other methods

Value

  • an object of class 'pcaivortho' sub-class of class dudi
  • rankan integer indicating the rank of the studied matrix
  • nfan integer indicating the number of kept axes
  • eiga vector with the all eigenvalues
  • lwa numeric vector with the row weigths (from dudi)
  • cwa numeric vector with the column weigths (from dudi)
  • Ya data frame with the dependant variables
  • Xa data frame with the explanatory variables
  • taba data frame with the modified array (projected variables)
  • c1a data frame with the Pseudo Principal Axes (PPA)
  • asa data frame with the Principal axis of dudi$tab on PAP
  • lsa data frame with the projection of lines of dudi$tab on PPA
  • lia data frame dudi$ls with the predicted values by X
  • l1a data frame with the Constraint Principal Components (CPC)
  • coa data frame with the inner product between the CPC and Y
  • parama data frame containing a summary

encoding

latin1

References

Rao, C. R. (1964) The use and interpretation of principal component analysis in applied research. Sankhya, A 26, 329--359. Sabatier, R., Lebreton J. D. and Chessel D. (1989) Principal component analysis with instrumental variables as a tool for modelling composition data. In R. Coppi and S. Bolasco, editors. Multiway data analysis, Elsevier Science Publishers B.V., North-Holland, 341--352

Examples

Run this code
par(mfrow = c(2,2))
data(avimedi)
cla <- avimedi$plan$reg:avimedi$plan$str

# simple ordination
coa1 <- dudi.coa(avimedi$fau, scan = FALSE, nf = 3)
s.class(coa1$li, cla, sub = "Sans contrainte")

# within region
w1 <- within(coa1, avimedi$plan$reg, scan = FALSE)
s.match(w1$li, w1$ls, clab = 0, sub = "Intra R�gion")
s.class(w1$li, cla, add.plot = TRUE)

# no region the same result
pcaivnonA <- pcaivortho(coa1, avimedi$plan$reg, scan = FALSE)
summary(pcaivnonA)

s.match(pcaivnonA$li, pcaivnonA$ls, clab = 0, 
    sub = "Contrainte Non A")
s.class(pcaivnonA$li, cla, add.plot = TRUE)

# region + strate
interAplusB <- pcaiv(coa1, avimedi$plan, scan = FALSE)
s.match(interAplusB$li, interAplusB$ls, clab = 0, 
    sub = "Contrainte A + B")
s.class(interAplusB$li, cla, add.plot = TRUE)

par(mfrow = c(1,1))

Run the code above in your browser using DataLab