dudi.pco
performs a principal coordinates analysis of a Euclidean distance matrix
and returns the results as objects of class pco
and dudi
.
dudi.pco(d, row.w = "uniform", scannf = TRUE, nf = 2,
full = FALSE, tol = 1e-07)
# S3 method for pco
scatter(x, xax = 1, yax = 2, clab.row = 1, posieig = "top",
sub = NULL, csub = 2, …)
an object of class dist
containing a Euclidean distance matrix.
an optional distance matrix row weights. If not NULL, must be a vector of positive numbers with length equal to the size of the distance matrix
a logical value indicating whether the eigenvalues bar plot should be displayed
if scannf FALSE, an integer indicating the number of kept axes
a logical value indicating whether all the axes should be kept
a tolerance threshold to test whether the distance matrix is Euclidean :
an eigenvalue is considered positive if it is larger than
-tol*lambda1
where lambda1
is the largest eigenvalue.
an object of class pco
the column number for the x-axis
the column number for the y-axis
a character size for the row labels
if "top" the eigenvalues bar plot is upside, if "bottom" it is downside, if "none" no plot
a string of characters to be inserted as legend
a character size for the legend, used with par("cex")*csub
further arguments passed to or from other methods
dudi.pco
returns a list of class pco
and dudi
. See dudi
Gower, J. C. (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika, 53, 325--338.
# NOT RUN {
data(yanomama)
gen <- quasieuclid(as.dist(yanomama$gen))
geo <- quasieuclid(as.dist(yanomama$geo))
ant <- quasieuclid(as.dist(yanomama$ant))
geo1 <- dudi.pco(geo, scann = FALSE, nf = 3)
gen1 <- dudi.pco(gen, scann = FALSE, nf = 3)
ant1 <- dudi.pco(ant, scann = FALSE, nf = 3)
plot(coinertia(ant1, gen1, scann = FALSE))
# }
Run the code above in your browser using DataLab