performs a special multivariate analysis for ecological data.
niche(dudiX, Y, scannf = TRUE, nf = 2)
# S3 method for niche
print(x, …)
# S3 method for niche
plot(x, xax = 1, yax = 2, …)
niche.param(x)
# S3 method for niche
rtest(xtest,nrepet=99, …)
a duality diagram providing from a function dudi.coa
, dudi.pca
, ... using an array sites-variables
a data frame sites-species according to dudiX$tab
with no columns of zero
a logical value indicating whether the eigenvalues bar plot should be displayed
if scannf FALSE, an integer indicating the number of kept axes
an object of class niche
further arguments passed to or from other methods
the numbers of the x-axis and the y-axis
an object of class niche
the number of permutations for the testing procedure
Returns a list of the class niche
(sub-class of dudi
) containing :
an integer indicating the rank of the studied matrix
an integer indicating the number of kept axes
a numeric value indicating the RV coefficient
a numeric vector with the all eigenvalues
a data frame with the row weigths (crossed array)
a data frame with the crossed array (averaging species/sites)
a data frame with the species coordinates
a data frame with the species normed scores
a data frame with the variable coordinates
a data frame with the variable normed scores
a data frame with the site coordinates
a data frame with the axis upon niche axis
Dol<U+00E9>dec, S., Chessel, D. and Gimaret, C. (2000) Niche separation in community analysis: a new method. Ecology, 81, 2914--1927.
# NOT RUN {
data(doubs)
dudi1 <- dudi.pca(doubs$env, scale = TRUE, scan = FALSE, nf = 3)
nic1 <- niche(dudi1, doubs$fish, scann = FALSE)
if(adegraphicsLoaded()) {
g1 <- s.traject(dudi1$li, plab.cex = 0, plot = FALSE)
g2 <- s.traject(nic1$ls, plab.cex = 0, plot = FALSE)
g3 <- s.corcircle(nic1$as, plot = FALSE)
g4 <- s.arrow(nic1$c1, plot = FALSE)
G1 <- ADEgS(list(g1, g2, g3, g4), layout = c(2, 2))
glist <- list()
for(i in 1:ncol(doubs$fish))
glist[[i]] <- s.distri(nic1$ls, dfdistri = doubs$fish[, i], psub.text = names(doubs$fish)[i],
plot = FALSE, storeData = TRUE)
G2 <- ADEgS(glist, layout = c(5, 6))
G3 <- s.arrow(nic1$li, plab.cex = 0.7)
} else {
par(mfrow = c(2, 2))
s.traject(dudi1$li, clab = 0)
s.traject(nic1$ls, clab = 0)
s.corcircle(nic1$as)
s.arrow(nic1$c1)
par(mfrow = c(5, 6))
for (i in 1:27) s.distri(nic1$ls, as.data.frame(doubs$fish[,i]),
csub = 2, sub = names(doubs$fish)[i])
par(mfrow = c(1, 1))
s.arrow(nic1$li, clab = 0.7)
}
data(trichometeo)
pca1 <- dudi.pca(trichometeo$meteo, scan = FALSE)
nic1 <- niche(pca1, log(trichometeo$fau + 1), scan = FALSE)
plot(nic1)
niche.param(nic1)
rtest(nic1,19)
data(rpjdl)
plot(niche(dudi.pca(rpjdl$mil, scan = FALSE), rpjdl$fau, scan = FALSE))
# }
Run the code above in your browser using DataLab