Learn R Programming

ade4 (version 1.7-5)

bca: Between-Class Analysis

Description

Performs a particular case of a Principal Component Analysis with respect to Instrumental Variables (pcaiv), in which there is only a single factor as explanatory variable.

Usage

between(dudi, fac, scannf = TRUE, nf = 2) "bca"(x, fac, scannf = TRUE, nf = 2, ...)

Arguments

dudi
a duality diagram, object of class dudi obtained from the functions dudi.coa, dudi.pca,...
x
a duality diagram, object of class dudi from one of the functions dudi.coa, dudi.pca,...
fac
a factor partitioning the rows of dudi$tab in classes
scannf
a logical value indicating whether the eigenvalues barplot should be displayed
nf
if scannf FALSE, a numeric value indicating the number of kept axes
...
further arguments passed to or from other methods

Value

Returns a list of class dudi, subclass 'between' containing

References

Dolédec, S. and Chessel, D. (1987) Rythmes saisonniers et composantes stationnelles en milieu aquatique I- Description d'un plan d'observations complet par projection de variables. Acta Oecologica, Oecologia Generalis, 8, 3, 403--426.

Examples

Run this code
data(meaudret)
pca1 <- dudi.pca(meaudret$env, scan = FALSE, nf = 4)
pca2 <- dudi.pca(meaudret$spe, scal = FALSE, scan = FALSE, nf = 4)
bet1 <- bca(pca1, meaudret$design$site, scan = FALSE, nf = 2)
bet2 <- bca(pca2, meaudret$design$site, scan = FALSE, nf = 2)
  
if(adegraphicsLoaded()) {
  g1 <- s.class(pca1$li, meaudret$design$site, psub.text = "Principal Component Analysis (env)",
    plot = F)
  g2 <- s.class(pca2$li, meaudret$design$site, psub.text = "Principal Component Analysis (spe)",
    plot = F)
  g3 <- s.class(bet1$ls, meaudret$design$site, psub.text = "Between sites PCA (env)", plot = F)
  g4 <- s.class(bet2$ls, meaudret$design$site, psub.text = "Between sites PCA (spe)", plot = F)
  G <- ADEgS(list(g1, g2, g3, g4), layout = c(2, 2))
  
} else {
  par(mfrow = c(2, 2))
  s.class(pca1$li, meaudret$design$site, sub = "Principal Component Analysis (env)", csub = 1.75)
  s.class(pca2$li, meaudret$design$site, sub = "Principal Component Analysis (spe)", csub = 1.75)
  s.class(bet1$ls, meaudret$design$site, sub = "Between sites PCA (env)", csub = 1.75)
  s.class(bet2$ls, meaudret$design$site, sub = "Between sites PCA (spe)", csub = 1.75)
  par(mfrow = c(1, 1))
}

coib <- coinertia(bet1, bet2, scann = FALSE)
plot(coib)

Run the code above in your browser using DataLab