Learn R Programming

ade4 (version 1.7-5)

dudi.acm: Multiple Correspondence Analysis

Description

dudi.acm performs the multiple correspondence analysis of a factor table. acm.burt an utility giving the crossed Burt table of two factors table. acm.disjonctif an utility giving the complete disjunctive table of a factor table. boxplot.acm a graphic utility to interpret axes.

Usage

dudi.acm (df, row.w = rep(1, nrow(df)), scannf = TRUE, nf = 2) acm.burt (df1, df2, counts = rep(1, nrow(df1))) acm.disjonctif (df) "boxplot"(x, xax = 1, ...)

Arguments

df, df1, df2
data frames containing only factors
row.w, counts
vector of row weights, by default, uniform weighting
scannf
a logical value indicating whether the eigenvalues bar plot should be displayed
nf
if scannf FALSE, an integer indicating the number of kept axes
x
an object of class acm
xax
the number of factor to display
...
further arguments passed to or from other methods

Value

dudi.acm returns a list of class acm and dudi (see dudi) containing ) containing

References

Tenenhaus, M. & Young, F.W. (1985) An analysis and synthesis of multiple correspondence analysis, optimal scaling, dual scaling, homogeneity analysis ans other methods for quantifying categorical multivariate data. Psychometrika, 50, 1, 91-119.

Lebart, L., A. Morineau, and M. Piron. 1995. Statistique exploratoire multidimensionnelle. Dunod, Paris.

See Also

s.chull, s.class

Examples

Run this code
data(ours)
summary(ours)

if(adegraphicsLoaded()) {
  g1 <- s1d.boxplot(dudi.acm(ours, scan = FALSE)$li[, 1], ours)
} else {
  boxplot(dudi.acm(ours, scan = FALSE))
}
## Not run: 
# data(banque)
# banque.acm <- dudi.acm(banque, scann = FALSE, nf = 3)
# 
# if(adegraphicsLoaded()) {
#   g2 <- adegraphics:::scatter.dudi(banque.acm)
# } else {
#   scatter(banque.acm)
# }  
# 
# apply(banque.acm$cr, 2, mean)
# banque.acm$eig[1:banque.acm$nf] # the same thing
# 
# if(adegraphicsLoaded()) {
#   g3 <- s1d.boxplot(banque.acm$li[, 1], banque)
#   g4 <- scatter(banque.acm)
# } else {
#   boxplot(banque.acm)
#   scatter(banque.acm)
# }
# 
# 
# s.value(banque.acm$li, banque.acm$li[,3])
# 
# bb <- acm.burt(banque, banque)
# bbcoa <- dudi.coa(bb, scann = FALSE)
# plot(banque.acm$c1[,1], bbcoa$c1[,1])
# # mca and coa of Burt table. Lebart & coll. section 1.4
# 
# bd <- acm.disjonctif(banque)
# bdcoa <- dudi.coa(bd, scann = FALSE)
# plot(banque.acm$li[,1], bdcoa$li[,1]) 
# # mca and coa of disjonctive table. Lebart & coll. section 1.4
# plot(banque.acm$co[,1], dudi.coa(bd, scann = FALSE)$co[,1]) 
# ## End(Not run)

Run the code above in your browser using DataLab