Learn R Programming

ade4 (version 1.7-5)

julliot: Seed dispersal

Description

This data set gives the spatial distribution of seeds (quadrats counts) of seven species in the understorey of tropical rainforest.

Usage

data(julliot)

Arguments

Format

julliot is a list containing the 3 following objects :
Species names of julliot$tab are Pouteria torta, Minquartia guianensis, Quiina obovata, Chrysophyllum lucentifolium, Parahancornia fasciculata, Virola michelii, Pourouma spp.

References

Julliot, C. (1992) Utilisation des ressources alimentaires par le singe hurleur roux, Alouatta seniculus (Atelidae, Primates), en Guyane : impact de la dissémination des graines sur la régénération forestière. Thèse de troisième cycle, Université de Tours.

Julliot, C. (1997) Impact of seed dispersal by red howler monkeys Alouatta seniculus on the seedling population in the understorey of tropical rain forest. Journal of Ecology, 85, 431--440.

Examples

Run this code
data(julliot)

## Not run: 
# if(adegraphicsLoaded()) {
#   if(requireNamespace("sp"", quiet = TRUE)) {
#     obj1 <- sp::SpatialPolygonsDataFrame(Sr = julliot$Spatial, data = log(julliot$tab + 1))
#     g1 <- s.Spatial(obj1)
#     
#     g2 <- s.value(julliot$xy, scalewt(log(julliot$tab + 1)), Sp = julliot$Spatial, 
#       pSp.col = "white", pgrid.draw = F)
#     
#   }
# } else {
#   if(requireNamespace("splancs", quiet = TRUE)) {
#     par(mfrow = c(3, 3))
#     for(k in 1:7)
#       area.plot(julliot$area, val = log(julliot$tab[, k] + 1),
#         sub = names(julliot$tab)[k], csub = 2.5)
#     par(mfrow = c(1, 1))
#     
#     par(mfrow = c(3, 3))
#     for(k in 1:7) {
#       area.plot(julliot$area)
#       s.value(julliot$xy, scalewt(log(julliot$tab[, k] + 1)),
#         sub = names(julliot$tab)[k],csub = 2.5, add.p = TRUE)
#     }
#     par(mfrow = c(1, 1))
#   }
# }## End(Not run)


if(adegraphicsLoaded()) {
  if(requireNamespace("sp", quiet = TRUE)) {
    g3 <- s.image(julliot$xy, log(julliot$tab + 1), span = 0.25)
  }
  g4 <- s.value(julliot$xy, log(julliot$tab + 1))
  
} else {
  if(requireNamespace("splancs", quiet = TRUE)) {
    par(mfrow = c(3, 3))
    for(k in 1:7)
      s.image(julliot$xy, log(julliot$tab[, k] + 1), kgrid = 3, span = 0.25,
        sub = names(julliot$tab)[k], csub = 2.5)
    par(mfrow = c(1, 1))
    
    par(mfrow = c(3, 3))
    for(k in 1:7)
      s.value(julliot$xy, log(julliot$tab[, k] + 1),
        sub = names(julliot$tab)[k], csub = 2.5)
    par(mfrow = c(1, 1))    
  }
}
        
## Not run: 
# if(requireNamespace("spdep", quiet = TRUE)) {
#   neig0 <- nb2neig(dnearneigh(as.matrix(julliot$xy), 1, 1.8))
#   if(adegraphicsLoaded()) {
#     g5 <- s.label(julliot$xy, nb = dnearneigh(as.matrix(julliot$xy), 1, 1.8))
#   
#   } else {
#     par(mfrow = c(1, 1))
#     s.label(julliot$xy, neig = neig0, clab = 0.75, incl = FALSE,
#      addax = FALSE, grid = FALSE)
#   }
#   gearymoran(ade4:::neig.util.LtoG(neig0), log(julliot$tab + 1))
#   orthogram(log(julliot$tab[, 3] + 1), ortho = scores.neig(neig0),
#    nrepet = 9999)
# }## End(Not run)

Run the code above in your browser using DataLab