Learn R Programming

ade4 (version 1.7-5)

witwit.coa: Internal Correspondence Analysis

Description

witwit.coa performs an Internal Correspondence Analysis. witwitsepan gives the computation and the barplot of the eigenvalues for each separated analysis in an Internal Correspondence Analysis.

Usage

witwit.coa(dudi, row.blocks, col.blocks, scannf = TRUE, nf = 2) "summary"(object, ...) witwitsepan(ww, mfrow = NULL, csub = 2, plot = TRUE)

Arguments

dudi
an object of class coa
row.blocks
a numeric vector indicating the row numbers for each block of rows
col.blocks
a numeric vector indicating the column numbers for each block of columns
scannf
a logical value indicating whether the eigenvalues bar plot should be displayed
nf
if scannf FALSE, an integer indicating the number of kept axes
object
an object of class witwit
...
further arguments passed to or from other methods
ww
an object of class witwit
mfrow
a vector of the form "c(nr,nc)", otherwise computed by a special own function 'n2mfrow'
csub
a character size for the sub-titles, used with par("cex")*csub
plot
if FALSE, numeric results are returned

Value

returns a list of class witwit, coa and dudi (see as.dudi) containing

References

Cazes, P., Chessel, D. and Dolédec, S. (1988) L'analyse des correspondances internes d'un tableau partitionné : son usage en hydrobiologie. Revue de Statistique Appliquée, 36, 39--54.

Examples

Run this code
data(ardeche)
coa1 <- dudi.coa(ardeche$tab, scann = FALSE, nf = 4)
ww <- witwit.coa(coa1, ardeche$row.blocks, ardeche$col.blocks, scann = FALSE)
ww
summary(ww)

if(adegraphicsLoaded()) {
  g1 <- s.class(ww$co, ardeche$sta.fac, plab.cex = 1.5, ellipseSi = 0, paxes.dr = FALSE, plot = F)
  g2 <- s.label(ww$co, plab.cex = 0.75, plot = F)
  G <- superpose(g1, g2, plot = TRUE)
  
} else {
  s.class(ww$co, ardeche$sta.fac, clab = 1.5, cell = 0, axesell = FALSE)
  s.label(ww$co, add.p = TRUE, clab = 0.75)
}

witwitsepan(ww, c(4, 6))

Run the code above in your browser using DataLab