K tables have the same rows and the same columns. Each table is transformed by P = X/sum(X). The average of P is computing. A correspondence analysis is realized on this average. The initial rows and the initial columns are projected in supplementary elements.
foucart(X, scannf = TRUE, nf = 2)
# S3 method for foucart
plot(x, xax = 1, yax = 2, clab = 1, csub = 2,
possub = "bottomright", …)
# S3 method for foucart
print(x, …)
a list of data frame where the row names and the column names are the same for each table
a logical value indicating whether the eigenvalues bar plot should be displayed
if scannf FALSE, an integer indicating the number of kept axes
an object of class 'foucart'
the column number of the x-axis
the column number of the y-axis
if not NULL, a character size for the labels, used with par("cex")*clab
a character size for the legend, used with par("cex")*csub
a string of characters indicating the sub-title position ("topleft", "topright", "bottomleft", "bottomright")
further arguments passed to or from other methods
foucart
returns a list of the classes 'dudi', 'coa' and 'foucart'
origine
axes-components saved
rank
useful vector
vector: column weights
vector: row weights
vector: eigen values
data.frame: modified array
data.frame: row coordinates
data.frame: row normed scores
data.frame: column coordinates
data.frame: column normed scores
data.frame: row coordinates (each table)
data.frame: col coordinates (each table)
data.frame: factors for Tli
data.frame: factors for Tco
Foucart, T. (1984) Analyse factorielle de tableaux multiples, Masson, Paris.
# NOT RUN {
data(bf88)
fou1 <- foucart(bf88, scann = FALSE, nf = 3)
fou1
plot(fou1)
data(meaudret)
l1 <- split(meaudret$spe, meaudret$design$season)
l1 <- lapply(l1, function(x)
{row.names(x) <- paste("Sit",1:5,sep="");x})
fou2 <- foucart(l1, scan = FALSE)
if(adegraphicsLoaded()) {
kplot(fou2, row.plabels.cex = 2)
} else {
kplot(fou2, clab.r = 2)
}
# }
Run the code above in your browser using DataLab