# Load data
data('cardealers4')
# Define input and output
input <- cardealers4[, c('Employees', 'Depreciation')]
output <- cardealers4[, c('CarsSold', 'WorkOrders')]
# Compute adea model
model <- adea(input, output, name = 'ADEA for cardealers4 dataset')
model
# Dealer A Dealer B Dealer C Dealer D Dealer E Dealer F
# 0.9915929 1.0000000 0.8928571 0.8653846 1.0000000 0.6515044
# Get model's load
model$loads$load
# [1] 0.6666667
# Get variable loads
model$loads
# $load
# [1] 0.6666667
# $input
# Employees Depreciation
# 0.6666667 1.3333333
# $iinput
# Employees
# 1
# $output
# CarsSold WorkOrders
# 1.2663476 0.7336524
# $ioutput
# WorkOrders
# 2
# Summarize the model and print additional information
summary(model)
# Model name ADEA for cardealers4 dataset
# Orientation input
# Load orientation inoutput
# Model load 0.666666666666659
# Input load.Employees 0.666666666666659
# Input load.Depreciation 1.33333333333334
# Output load.CarsSold 1.1025075271907
# Output load.WorkOrders 0.8974924728093
# Inputs Employees Depreciation
# Outputs CarsSold WorkOrders
# nInputs 2
# nOutputs 2
# nVariables 4
# nEfficients 2
# Eff. Mean 0.90022318389575
# Eff. sd 0.135194867030839
# Eff. Min. 0.651504424778761
# Eff. 1st Qu. 0.872252747252747
# Eff. Median 0.942225031605562
# Eff. 3rd Qu. 0.997898230088495
# Eff. Max. 1
Run the code above in your browser using DataLab