# Read data
data('cardealers4')
input <- cardealers4[, c('Employees', 'Depreciation')]
output <- cardealers4[, c('CarsSold', 'WorkOrders')]
# Compute all dea models in parametric way and store in sol.ap
sol.ap <- adea_parametric(input, output)
# Show result
sol.ap
# Loads nEfficients nVariables nInputs nOutputs Inputs Outputs
# 4 0.6666667 2 4 2 2 Employees, Depreciation CarsSold, WorkOrders
# 3 0.9575672 2 3 1 2 Depreciation CarsSold, WorkOrders
# 2 1.0000000 1 2 1 1 Depreciation CarsSold
# Summary the model with 3 variables
summary(sol.ap$models[[3]])
# Model name
# Orientation input
# Load orientation inoutput
# Model load 0.957567163474156
# Input load.Depreciation 1
# Output load.CarsSold 1.04243283652584
# Output load.WorkOrders 0.957567163474156
# Inputs Depreciation
# Outputs CarsSold WorkOrders
# nInputs 1
# nOutputs 2
# nVariables 3
# nEfficients 2
# Eff. Mean 0.90022318389575
# Eff. sd 0.135194867030839
# Eff. Min. 0.651504424778761
# Eff. 1st Qu. 0.872252747252747
# Eff. Median 0.942225031605563
# Eff. 3rd Qu. 0.997898230088496
# Eff. Max. 1
# Get efficiencies for the model with 3 variables
sol.ap$models[[3]]$eff
# Dealer A Dealer B Dealer C Dealer D Dealer E Dealer F
# 0.9915929 1.0000000 0.8928571 0.8653846 1.0000000 0.6515044
Run the code above in your browser using DataLab