data('cardealers4')
input <- cardealers4[, c('Employees', 'Depreciation')]
output <- cardealers4[, c('CarsSold', 'WorkOrders')]
# Compute adea model
model <- adea(input, output)
model
# Dealer A Dealer B Dealer C Dealer D Dealer E Dealer F
# 0.9915929 1.0000000 0.8928571 0.8653846 1.0000000 0.6515044
# Get input variable loads
model$loads$input
# Employees Depreciation
# 0.6666667 1.3333333
# Get output variable loads
model$loads$output
# CarsSold WorkOrders
# 1.2663476 0.7336524
# Compute a constrained adea model to force load between .8 and 1.5
cmodel <- cadea(input, output, load.min = .8, load.max = 1.5)
cmodel
# Dealer A Dealer B Dealer C Dealer D Dealer E Dealer F
# 0.9915929 1.0000000 0.8928571 0.8653846 1.0000000 0.5920826
# Get loads
cmodel$loads
# $load
# [1] 0.8
# $input
# Employees Depreciation
# 0.8 1.2
# $iinput
# Employees
# 1
# $output
# CarsSold WorkOrders
# 1.2 0.8
# $ioutput
# WorkOrders
# 2
# $load.min
# [1] 0.8 0.8 0.8 0.8
# $load.max
# [1] 1.5 1.5 1.5 1.5
# See differences of efficiencies in both models
model$eff - cmodel$eff
# Dealer A Dealer B Dealer C Dealer D Dealer E Dealer F
# -2.220446e-16 -1.332268e-15 -1.110223e-16 2.220446e-16 -1.110223e-16 5.942183e-02
Run the code above in your browser using DataLab