## Not run:
# ## load data
# data(microbov)
# obj <- genind2genpop(microbov)
#
# ## compare different scaling
# X1 <- scaleGen(obj)
# X2 <- scaleGen(obj,met="bin")
#
# ## compute PCAs
# pcaObj <- dudi.pca(obj,scale=FALSE,scannf=FALSE) # pca with no scaling
# pcaX1 <- dudi.pca(X1,scale=FALSE,scannf=FALSE,nf=100) # pca with usual scaling
# pcaX2 <- dudi.pca(X2,scale=FALSE,scannf=FALSE,nf=100) # pca with scaling for binomial variance
#
# ## get the loadings of alleles for the two scalings
# U1 <- pcaX1$c1
# U2 <- pcaX2$c1
#
#
# ## find an optimal plane to compare loadings
# ## use a procustean rotation of loadings tables
# pro1 <- procuste(U1,U2,nf=2)
#
# ## graphics
# par(mfrow=c(2,2))
# # eigenvalues
# barplot(pcaObj$eig,main="Eigenvalues\n no scaling")
# barplot(pcaX1$eig,main="Eigenvalues\n usual scaling")
# barplot(pcaX2$eig,main="Eigenvalues\n 'binomial' scaling")
# # differences between loadings of alleles
# s.match(pro1$scor1,pro1$scor2,clab=0,sub="usual -> binom (procustean rotation)")
#
# ## End(Not run)
Run the code above in your browser using DataLab