Learn R Programming

adehabitat (version 1.1-1)

predict.enfa: Habitat Suitability Maps Built from the ENFA

Description

predict.enfa computes habitat suitability maps using the Ecological-Niche Factor Analysis and the Mahalanobis distances method.

Usage

predict.enfa(object, nf, ...)

Arguments

object
an object of class enfa
nf
the number of axes of specialization kept for the predictions. By default, all axes kept in object are used
...
further arguments passed to or from other methods

Value

  • Returns a raster map of class kasc.

Details

The predictions are based on the position of the niche defined by the ENFA within the multidimensional space of environmental variables. The ENFA produces row coordinates for each pixel, which are used with the function mahalanobis. For each pixel, this function computes the Mahalanobis distances from the barycentre of the niche. Actually, the function predict.enfa is identical to the function mahasuhab, except that the habitat suitability map is computed using the axes of the ENFA, instead of the raw data.

References

Clark, J.D., Dunn, J.E. and Smith, K.G. (1993) A multivariate model of female black bear habitat use for a geographic information system. Journal of Wildlife Management, 57, 519--526. Hirzel, A.H., Hausser, J., Chessel, D. & Perrin, N. (2002) Ecological-niche factor analysis: How to compute habitat-suitability maps without absence data? Ecology, 83, 2027--2036.

See Also

mahalanobis for information on the computation of Mahalanobis distances. mahasuhab for more details on the computation of habitat suitability maps using the Mahalanobis distances.

Examples

Run this code
data(lynxjura)

## We keep only "wild" indices.
tmp <- lynxjura$loc[,4] != "D"
map <- lynxjura$map
pts <- lynxjura$locs[tmp, c("X","Y")]
(enfa1 <- enfa(map, pts, scannf = FALSE))

## Compute the prediction
pred <- predict(enfa1)
image(pred)
contour(pred, col="green", add=T)
points(pts, col = "red", pch = 16)
## Lighter areas are the most preferred areas

Run the code above in your browser using DataLab