Learn R Programming

adimpro (version 0.7.1)

awsimage: Propagation-Separation approach for smoothing of 2D images

Description

This functions implement the Propagation-Separation approach (local constant and local polynomial model) for smoothing images. Function awsaniso uses anisotropic location weights. This is done by evaluating local gradient estimates obtained from the actual estimated color values.

Usage

awsimage(object, hmax=4, aws=TRUE, varmodel=NULL, ladjust=1.25,
         mask=NULL, xind = NULL, yind = NULL, 
         wghts=c(1,1,1,1), scorr=TRUE, 
         lkern="Triangle", plateau=NULL, homogen=TRUE, earlystop=TRUE,
         demo=FALSE, graph=FALSE, 
         max.pixel=4.e2, clip = FALSE, compress=TRUE)
awspimage(object, hmax=12, aws=TRUE, degree=1, varmodel = NULL,
          ladjust=1.0, xind = NULL, yind = NULL, 
          wghts=c(1,1,1,1), scorr= TRUE,
          lkern="Triangle", plateau=NULL, homogen=TRUE, earlystop=TRUE,
          demo=FALSE, graph=FALSE, 
          max.pixel= 4.e2, clip = FALSE, compress=TRUE)
awsaniso(object, hmax = 4, g = 3, rho = 0, aws = TRUE, varmodel = NULL,
          ladjust = 1, xind = NULL, yind = NULL, wghts = c(1, 1, 1, 1), 
          scorr = TRUE, lkern = "Triangle", demo = FALSE, graph = FALSE,
          satexp = 0.25, max.pixel = 400, clip = FALSE, compress = TRUE)

Arguments

object
Image object, class "adimpro", as from read.image, read.raw, or make.image.
hmax
Maximum bandwidth to use in the iteration procedure.
g
Bandwidth for anisotropic smoothing gradient estimates, preferably g >= 3 for images with line type texture and small g 1 for improving edges between homogeneous regions (function awsaniso only).