Learn R Programming

adiv (version 2.2.1)

betastat: Multiple-Site Dissimilarity Measure for Species Presence/Absence Data

Description

Functions betastatjac and betastatsor calculate multiple-site dissimilarity (beta diversity). The first one is derived from Jaccard coefficient of similarity and the second from Sorensen coefficient. These proposed dissimilarity indices are additively partitioned into species nestedness and turnover.

Usage

betastatjac(comm)

betastatsor(comm)

Value

The two functions return a vector of 4 values:

beta

Ricotta and Pavoine (2015) \(\beta^+\) relative measure of additive beta diversity (multiple-site dissimilarity);

betaT

Ricotta and Pavoine (2015) \(\beta_T\) contribution of species turnover to multiple-site dissimilarity;

betaN

Ricotta and Pavoine (2015) \(\beta_N\) contribution of species nestedness to multiple-site dissimilarity;

sim

Ricotta and Pavoine (2015) \(\bar{\beta}^{\times}\) relative measure of multiple-site similarity.

Arguments

comm

a data frame typically with communities as rows, species as columns and presence/absence (1/0) as entries.

Author

Sandrine Pavoine sandrine.pavoine@mnhn.fr

References

Ricotta, C. and Pavoine, S. (2015) A multiple-site dissimilarity measure for species presence/absence data and its relationship with nestedness and turnover. Ecological Indicators, 54, 203--206.

Examples

Run this code
data(RP15EI)
# Scripts used in Figure 1 of Ricotta and Pavoine (2015)
betastatjac(RP15EI$M1)
betastatjac(RP15EI$M2)
betastatjac(RP15EI$M3)
betastatjac(RP15EI$M4)

#see also
betastatsor(RP15EI$M1)
betastatsor(RP15EI$M2)
betastatsor(RP15EI$M3)
betastatsor(RP15EI$M4)

Run the code above in your browser using DataLab