# NOT RUN {
#Simulated data
alpha = 0.5
d = simulate_CR_data(n=4,m=50,alpha=alpha,beta1=c(0.7,-0.7,-0.5)*1/alpha,
beta2=c(0.5,-0.5,1),betaC=c(0,0,0)*1/alpha,lambdaC=0.59)
#Stratified Model with est.t=TRUE
model1 <- crrscKM(times=d[,1],causes=d[,2],covariates=d[,4:5],
treatment=d[,3],clusters=d[,6],stratified.model=TRUE,est.t=TRUE,
pre.t=sort(d$time[d$cause==1]),Z0=c(0.5,0.5))
#Unstratified Model with est.t=TRUE
model2 <- crrscKM(times=d[,1],causes=d[,2],covariates=d[,4:5],
treatment=d[,3],clusters=d[,6],stratified.model=FALSE,est.t=TRUE,
pre.t=sort(d$time[d$cause==1]),Z0=c(0.5,0.5))
#Stratified Model with est.t=FALSE
model3 <- crrscKM(times=d[,1],causes=d[,2],covariates=d[,4:5],
treatment=d[,3],clusters=d[,6],stratified.model=TRUE,est.t=FALSE,
pre.t=sort(d$time[d$cause==1]),Z0=c(0.5,0.5))
#Unstratified Model with est.t=FALSE.
#Create dummy variables first
dummy <- model.matrix(~ factor(d[,3]))[,-1]
model4 <- crrscKM(times=d[,1],causes=d[,2],covariates=cbind(d[,4:5],dummy),
clusters=d[,6],stratified.model=FALSE,est.t=FALSE,
pre.t=sort(d$time[d$cause==1]),Z0=c(0.5,0.5))
#Only continuous covariates are available.
model5 <- crrscKM(times=d[,1],causes=d[,2],covariates=d[,4:5],
clusters=d[,6],stratified.model=FALSE,est.t=FALSE,
pre.t=sort(d$time[d$cause==1]),Z0=c(0.5,0.5))
# }
Run the code above in your browser using DataLab