# NOT RUN {
#Simulated data
alpha = 0.5
d = simulate_surv_data(N=100,alpha=alpha,beta1=0.5*1/alpha,beta2=-0.5*1/alpha,
beta3=1/alpha,rateC=1.3,lambda0=1,lambda1=2,stratified = TRUE)
#Stratified Model with est.t=TRUE
model1 <- survCOX(times=d$times,deltas=d$delta,covariates=d[,5:7],treatment=d[,8],
clusters=d$cluster,est.t=TRUE,pre.t=sort(d$times[d$delta==1]),Z0=c(1,0.5,1) )
#Unstratified Model with est.t=TRUE
model2 <- survCOX(times=d$times,deltas=d$delta,covariates=d[,5:7],treatment=d[,8],
clusters=d$cluster,est.t=TRUE,pre.t=sort(d$times[d$delta==1]),stratified.model=FALSE,
Z0=c(1,0.5,1) )
#Stratified Model with est.t=FALSE
model3 <- survCOX(times=d$times,deltas=d$delta,covariates=d[,5:7],treatment=d[,8],
clusters=d$cluster,est.t=FALSE,pre.t=sort(d$times[d$delta==1]),Z0=c(1,0.5,1) )
#Unstratified Model with est.t=FALSE
model4 <- survCOX(times=d$times,deltas=d$delta,covariates=cbind(d[,5:7],d[,8]),
clusters=d$cluster,est.t=FALSE,pre.t=sort(d$times[d$delta==1]),
stratified.model=FALSE,Z0=c(1,0.5,1) )
#Only continuous covariates are available
model5 <- survCOX(times=d$times,deltas=d$delta,covariates=d[,5:7],
clusters=d$cluster,est.t=FALSE,pre.t=sort(d$times[d$delta==1]),
stratified.model=FALSE,Z0=c(1,0.5,1) )
# }
Run the code above in your browser using DataLab