Learn R Programming

adlift (version 0.8-2)

LinearPred: LinearPred

Description

This function performs the prediction lifting step using a linear regression curve given a configuration of neighbours.

Usage

LinearPred(pointsin, X, coeff, nbrs, remove, intercept, neighbours)

Arguments

pointsin
The indices of gridpoints still to be removed.
X
the vector of grid values.
coeff
the vector of detail and scaling coefficients at that step of the transform.
nbrs
the indices (into X) of the neighbours to be used in the prediction step.
remove
the index (into X) of the point to be removed.
intercept
Boolean value for whether or not an intercept is used in the prediction step of the transform.
neighbours
the number of neighbours in the computation of the predicted value. This is not actually used specifically in LinearPred, since this is known already from nbrs.

Value

  • Xneighmatrix of X values corresponding to the neighbours of the removed point. The matrix consists of the column X[nbrs] augmented with a column of ones if an intercept is used. Refer to any reference on linear regression for more details.
  • mmthe matrix from which the prediction is made. In terms of Xneigh, it is $(Xneigh^T Xneigh)^{-1} Xneigh^T$.
  • bhatThe regression coefficients used in prediction.
  • weightsthe prediction weights for the neighbours.
  • predthe predicted function value obtained from the regression.
  • coeffvector of (modified) detail and scaling coefficients to be used in the update step of the transform.

Details

The procedure performs linear regression using the given neighbours using an intercept if chosen. The regression coefficients (weights) are used to predict the new function value at the removed point.

See Also

CubicPred, fwtnp, QuadPred

Examples

Run this code
#
# Generate some doppler data: 500 observations.
#
tx <- runif(500)
ty<-make.signal2("doppler",x=tx)
#
# Compute the neighbours of point 173 (2 neighbours on each side)
#
out<-getnbrs(tx,173,order(tx),2,FALSE)
#
# Perform linear regression based on the neighbours (without intercept) 
#
lp<-LinearPred(order(tx),tx,ty,out$nbrs,173,FALSE,2)
#
#
lp
#
#the regression curve details

Run the code above in your browser using DataLab