fwtnpmp(input, f, inputtype = "points", nkeep = 2, intercept = TRUE,
initboundhandl = "reflect", neighbours = 1,
closest = FALSE, LocalPredmp = LinearPredmp, mpdet="ave")
"reflect"
- the intervals corresponding to the first and last datapoints are taken to have the respective grid values as midpoints; and "
LinearPredmp
, QuadPredmp
, CubicPredmp
, AdaptPredmp
and AdaptNeighmp
.LocalPred=AdaptNeigh
.Step One. Order the grid values so that corresponding intervals can be constructed, using the average function value at multiple points.
Step Two. Compute "integrals" for each point. For each point its integral is the length of the interval associated to the gridpoint.
Step Three. Identify the point to remove as that with the smallest integral. Generally, we remove points in order of smallest to largest integral. The integrals of neighbours of removed points change at each step.
Step Four(a). The neighbours of the removed point are identified using the specified neighbour configuration. The values of
Step Four(b). The integrals and the scaling function values (other
Step Five. Return to step 3 but in the identification of a point to remove the updated integrals are used.
The algorithm continues until as many points as desired are removed.
AdaptNeighmp
, AdaptPredmp
, CubicPredmp
, fwtnp
, invtnpmp
, LinearPredmp
, QuadPredmp
#read in multiple point data...
data(motorcycledata)
times<-motorcycledata$time
accel<-motorcycledata$accel
out<-fwtnpmp(times,accel,LocalPredmp=AdaptPredmp,neighbours=2)
out$coeff
#these are the detail coefficients of the transform.
Run the code above in your browser using DataLab