Adds a parameter computed from the analysis value of other parameters. It is
expected that the analysis value of the new parameter is defined by an
expression using the analysis values of other parameters, such as addition/sum,
subtraction/difference, multiplication/product, division/ratio,
exponentiation/logarithm, or by formula.
For example mean arterial pressure (MAP) can be derived from systolic (SYSBP)
and diastolic blood pressure (DIABP) with the formula
$$MAP = \frac{SYSBP + 2 DIABP}{3}$$
derive_param_computed(
dataset = NULL,
dataset_add = NULL,
by_vars,
parameters,
set_values_to,
filter = NULL,
constant_by_vars = NULL,
constant_parameters = NULL,
keep_nas = FALSE
)
The input dataset with the new parameter added. Note, a variable will only
be populated in the new parameter rows if it is specified in by_vars
.
Input dataset
The variables specified by the by_vars
argument are expected to be in the dataset.
PARAMCD
is expected as well.
The variable specified by by_vars
and PARAMCD
must be a unique key of
the input dataset after restricting it by the filter condition (filter
parameter) and to the parameters specified by parameters
.
a dataset, i.e., a data.frame
or tibble
NULL
Additional dataset
The variables specified by the by_vars
parameter are expected.
The variable specified by by_vars
and PARAMCD
must be a unique key of
the additional dataset after restricting it to the parameters specified by
parameters
.
If the argument is specified, the observations of the additional dataset
are considered in addition to the observations from the input dataset
(dataset
restricted by filter
).
a dataset, i.e., a data.frame
or tibble
NULL
Grouping variables
For each group defined by by_vars
an observation is added to the output
dataset. Only variables specified in by_vars
will be populated
in the newly created records.
list of variables created by exprs()
, e.g., exprs(USUBJID, VISIT)
none
Required parameter codes
It is expected that all parameter codes (PARAMCD
) which are required to
derive the new parameter are specified for this parameter or the
constant_parameters
parameter.
If observations should be considered which do not have a parameter code,
e.g., if an SDTM dataset is used, temporary parameter codes can be derived
by specifying a list of expressions. The name of the element defines the
temporary parameter code and the expression the condition for selecting the
records. For example parameters = exprs(HGHT = VSTESTCD == "HEIGHT")
selects the observations with VSTESTCD == "HEIGHT"
from the input data
(dataset
and dataset_add
), sets PARAMCD = "HGHT"
for these
observations, and adds them to the observations to consider.
Unnamed elements in the list of expressions are considered as parameter
codes. For example, parameters = exprs(WEIGHT, HGHT = VSTESTCD == "HEIGHT")
uses the parameter code "WEIGHT"
and creates a temporary
parameter code "HGHT"
.
A character vector of PARAMCD
values or a list of expressions
none
Variables to be set
The specified variables are set to the specified values for the new
observations. The values of variables of the parameters specified by
parameters
can be accessed using <variable name>.<parameter code>
. For
example
exprs(
AVAL = (AVAL.SYSBP + 2 * AVAL.DIABP) / 3,
PARAMCD = "MAP"
)
defines the analysis value and parameter code for the new parameter.
Variable names in the expression must not contain more than one dot.
Note that dplyr
helper functions such as dplyr::starts_with()
should
be avoided unless the list of variable-value pairs is clearly
specified in a statement via the set_values_to
argument.
list of named expressions created by a formula using exprs()
, e.g., exprs(AVALC = VSSTRESC, AVAL = yn_to_numeric(AVALC))
none
Filter condition
The specified condition is applied to the input dataset before deriving the new parameter, i.e., only observations fulfilling the condition are taken into account.
an unquoted condition, e.g., AVISIT == "BASELINE"
NULL
By variables for constant parameters
The constant parameters (parameters that are measured only once) are merged to the other parameters using the specified variables. (Refer to Example 2)
list of variables created by exprs()
, e.g., exprs(USUBJID, VISIT)
NULL
Required constant parameter codes
It is expected that all the parameter codes (PARAMCD
) which are required
to derive the new parameter and are measured only once are specified here.
For example if BMI should be derived and height is measured only once while
weight is measured at each visit. Height could be specified in the
constant_parameters
parameter. (Refer to Example 2)
If observations should be considered which do not have a parameter code,
e.g., if an SDTM dataset is used, temporary parameter codes can be derived
by specifying a list of expressions. The name of the element defines the
temporary parameter code and the expression the condition for selecting the
records. For example constant_parameters = exprs(HGHT = VSTESTCD == "HEIGHT")
selects the observations with VSTESTCD == "HEIGHT"
from the
input data (dataset
and dataset_add
), sets PARAMCD = "HGHT"
for these
observations, and adds them to the observations to consider.
Unnamed elements in the list of expressions are considered as parameter
codes. For example, constant_parameters = exprs(WEIGHT, HGHT = VSTESTCD == "HEIGHT")
uses the parameter code "WEIGHT"
and creates a temporary
parameter code "HGHT"
.
A character vector of PARAMCD
values or a list of expressions
NULL
Keep observations with NA
s
If the argument is set to TRUE
, observations are added even if some of
the values contributing to the computed value are NA
(see Example 1b).
If the argument is set to a list of variables, observations are added even
if some of specified variables are NA
(see Example 1c).
TRUE
, FALSE
, or a list of variables created by
exprs()
e.g. exprs(ADTF, ATMF)
FALSE
Examples 1a, 1b, and 1c use the following ADVS
data.
ADVS <- tribble(
~USUBJID, ~PARAMCD, ~PARAM, ~AVAL, ~VISIT,
"01-701-1015", "DIABP", "Diastolic Blood Pressure (mmHg)", 51, "BASELINE",
"01-701-1015", "DIABP", "Diastolic Blood Pressure (mmHg)", 50, "WEEK 2",
"01-701-1015", "SYSBP", "Systolic Blood Pressure (mmHg)", 121, "BASELINE",
"01-701-1015", "SYSBP", "Systolic Blood Pressure (mmHg)", 121, "WEEK 2",
"01-701-1028", "DIABP", "Diastolic Blood Pressure (mmHg)", 79, "BASELINE",
"01-701-1028", "DIABP", "Diastolic Blood Pressure (mmHg)", 80, "WEEK 2",
"01-701-1028", "SYSBP", "Systolic Blood Pressure (mmHg)", 130, "BASELINE",
"01-701-1028", "SYSBP", "Systolic Blood Pressure (mmHg)", NA, "WEEK 2"
) %>%
mutate(
AVALU = "mmHg",
ADT = case_when(
VISIT == "BASELINE" ~ as.Date("2024-01-10"),
VISIT == "WEEK 2" ~ as.Date("2024-01-24")
),
ADTF = NA_character_
)
parameters
, set_values_to
)
Derive mean arterial pressure (MAP) from systolic (SYSBP) and diastolic blood pressure (DIABP).
Here, for each USUBJID
and VISIT
group (specified in by_vars
),
an observation is added to the output dataset when the filtered
input dataset (dataset
) contains exactly one observation for
each parameter code specified for parameters
and all contributing
values (e.g., AVAL.SYSBP
and AVAL.DIABP
) are not NA
.
Indeed, patient 01-701-1028
does not get a "WEEK 2"
-derived record
as AVAL
is NA
for their "WEEK 2"
systolic blood pressure.
derive_param_computed(
ADVS,
by_vars = exprs(USUBJID, VISIT),
parameters = c("SYSBP", "DIABP"),
set_values_to = exprs(
AVAL = (AVAL.SYSBP + 2 * AVAL.DIABP) / 3,
PARAMCD = "MAP",
PARAM = "Mean Arterial Pressure (mmHg)",
AVALU = "mmHg",
ADT = ADT.SYSBP
)
) %>%
select(-PARAM)
#> # A tibble: 11 × 7
#> USUBJID PARAMCD AVAL VISIT AVALU ADT ADTF
#> <chr> <chr> <dbl> <chr> <chr> <date> <chr>
#> 1 01-701-1015 DIABP 51 BASELINE mmHg 2024-01-10 <NA>
#> 2 01-701-1015 DIABP 50 WEEK 2 mmHg 2024-01-24 <NA>
#> 3 01-701-1015 SYSBP 121 BASELINE mmHg 2024-01-10 <NA>
#> 4 01-701-1015 SYSBP 121 WEEK 2 mmHg 2024-01-24 <NA>
#> 5 01-701-1028 DIABP 79 BASELINE mmHg 2024-01-10 <NA>
#> 6 01-701-1028 DIABP 80 WEEK 2 mmHg 2024-01-24 <NA>
#> 7 01-701-1028 SYSBP 130 BASELINE mmHg 2024-01-10 <NA>
#> 8 01-701-1028 SYSBP NA WEEK 2 mmHg 2024-01-24 <NA>
#> 9 01-701-1015 MAP 74.3 BASELINE mmHg 2024-01-10 <NA>
#> 10 01-701-1015 MAP 73.7 WEEK 2 mmHg 2024-01-24 <NA>
#> 11 01-701-1028 MAP 96 BASELINE mmHg 2024-01-10 <NA>
keep_nas = TRUE
)
Use option keep_nas = TRUE
to derive MAP in the case where
some/all values of a variable used in the computation are missing.
Note that observations will be added here even if some of the values contributing
to the computed values are NA
. In particular, patient 01-701-1028
does get a "WEEK 2"
-derived record as compared to Example 1a, but
with AVAL = NA
.
derive_param_computed(
ADVS,
by_vars = exprs(USUBJID, VISIT),
parameters = c("SYSBP", "DIABP"),
set_values_to = exprs(
AVAL = (AVAL.SYSBP + 2 * AVAL.DIABP) / 3,
PARAMCD = "MAP",
PARAM = "Mean Arterial Pressure (mmHg)",
AVALU = "mmHg",
ADT = ADT.SYSBP,
ADTF = ADTF.SYSBP
),
keep_nas = TRUE
)%>%
select(-PARAM)
#> # A tibble: 12 × 7
#> USUBJID PARAMCD AVAL VISIT AVALU ADT ADTF
#> <chr> <chr> <dbl> <chr> <chr> <date> <chr>
#> 1 01-701-1015 DIABP 51 BASELINE mmHg 2024-01-10 <NA>
#> 2 01-701-1015 DIABP 50 WEEK 2 mmHg 2024-01-24 <NA>
#> 3 01-701-1015 SYSBP 121 BASELINE mmHg 2024-01-10 <NA>
#> 4 01-701-1015 SYSBP 121 WEEK 2 mmHg 2024-01-24 <NA>
#> 5 01-701-1028 DIABP 79 BASELINE mmHg 2024-01-10 <NA>
#> 6 01-701-1028 DIABP 80 WEEK 2 mmHg 2024-01-24 <NA>
#> 7 01-701-1028 SYSBP 130 BASELINE mmHg 2024-01-10 <NA>
#> 8 01-701-1028 SYSBP NA WEEK 2 mmHg 2024-01-24 <NA>
#> 9 01-701-1015 MAP 74.3 BASELINE mmHg 2024-01-10 <NA>
#> 10 01-701-1015 MAP 73.7 WEEK 2 mmHg 2024-01-24 <NA>
#> 11 01-701-1028 MAP 96 BASELINE mmHg 2024-01-10 <NA>
#> 12 01-701-1028 MAP NA WEEK 2 mmHg 2024-01-24 <NA>
keep_nas = exprs()
)
Use option keep_nas = exprs(ADTF)
to derive MAP in the case where
some/all values of a variable used in the computation are
missing but keeping NA
values of ADTF
.
This is subtly distinct from Examples 1a and 1b. In 1a, we do not
get new derived records if any of the source records have a value
of NA
for a variable that is included in set_values_to
.
In 1b, we do the opposite and allow the creation of new records
regardless of how many NA
s we encounter in the source variables.
Here, we want to disregard NA
values but only from the variables
that are specified via keep_na_values
.
This is important because we have added ADTF
in set_values_to
,
but all values of this variable are NA
. As such, in order to
get any derived records at all, but continue not getting one
when AVAL
is NA
in any of the source records,
(see patient "01-701-1028"
again), we specify keep_nas = exprs(ADTF)
.
derive_param_computed(
ADVS,
by_vars = exprs(USUBJID, VISIT),
parameters = c("SYSBP", "DIABP"),
set_values_to = exprs(
AVAL = (AVAL.SYSBP + 2 * AVAL.DIABP) / 3,
PARAMCD = "MAP",
PARAM = "Mean Arterial Pressure (mmHg)",
AVALU = "mmHg",
ADT = ADT.SYSBP,
ADTF = ADTF.SYSBP
),
keep_nas = exprs(ADTF)
)
#> # A tibble: 11 × 8
#> USUBJID PARAMCD PARAM AVAL VISIT AVALU ADT ADTF
#> <chr> <chr> <chr> <dbl> <chr> <chr> <date> <chr>
#> 1 01-701-1015 DIABP Diastolic Blood Press… 51 BASE… mmHg 2024-01-10 <NA>
#> 2 01-701-1015 DIABP Diastolic Blood Press… 50 WEEK… mmHg 2024-01-24 <NA>
#> 3 01-701-1015 SYSBP Systolic Blood Pressu… 121 BASE… mmHg 2024-01-10 <NA>
#> 4 01-701-1015 SYSBP Systolic Blood Pressu… 121 WEEK… mmHg 2024-01-24 <NA>
#> 5 01-701-1028 DIABP Diastolic Blood Press… 79 BASE… mmHg 2024-01-10 <NA>
#> 6 01-701-1028 DIABP Diastolic Blood Press… 80 WEEK… mmHg 2024-01-24 <NA>
#> 7 01-701-1028 SYSBP Systolic Blood Pressu… 130 BASE… mmHg 2024-01-10 <NA>
#> 8 01-701-1028 SYSBP Systolic Blood Pressu… NA WEEK… mmHg 2024-01-24 <NA>
#> 9 01-701-1015 MAP Mean Arterial Pressur… 74.3 BASE… mmHg 2024-01-10 <NA>
#> 10 01-701-1015 MAP Mean Arterial Pressur… 73.7 WEEK… mmHg 2024-01-24 <NA>
#> 11 01-701-1028 MAP Mean Arterial Pressur… 96 BASE… mmHg 2024-01-10 <NA>
constant_parameters
and constant_by_vars
)
Derive BMI where HEIGHT
is measured only once.
In the above examples, for each parameter specified in the
parameters
argument, we expect one record per by group, where the by
group is specified in by_vars
. However, if a parameter is only
measured once, it can be specified in constant_parameters
instead.
A modified by group still needs to be provided for the constant
parameters. This can be done via constant_by_vars
.
See the example below, where weight is measured for each patient
at each visit (by_vars = exprs(USUBJID, VISIT)
), while height
is measured for each patient only at the first visit
(constant_parameters = "HEIGHT"
, constant_by_vars = exprs(USUBJID
)).
ADVS <- tribble(
~USUBJID, ~PARAMCD, ~PARAM, ~AVAL, ~AVALU, ~VISIT,
"01-701-1015", "HEIGHT", "Height (cm)", 147.0, "cm", "SCREENING",
"01-701-1015", "WEIGHT", "Weight (kg)", 54.0, "kg", "SCREENING",
"01-701-1015", "WEIGHT", "Weight (kg)", 54.4, "kg", "BASELINE",
"01-701-1015", "WEIGHT", "Weight (kg)", 53.1, "kg", "WEEK 2",
"01-701-1028", "HEIGHT", "Height (cm)", 163.0, "cm", "SCREENING",
"01-701-1028", "WEIGHT", "Weight (kg)", 78.5, "kg", "SCREENING",
"01-701-1028", "WEIGHT", "Weight (kg)", 80.3, "kg", "BASELINE",
"01-701-1028", "WEIGHT", "Weight (kg)", 80.7, "kg", "WEEK 2"
)derive_param_computed(
ADVS,
by_vars = exprs(USUBJID, VISIT),
parameters = "WEIGHT",
set_values_to = exprs(
AVAL = AVAL.WEIGHT / (AVAL.HEIGHT / 100)^2,
PARAMCD = "BMI",
PARAM = "Body Mass Index (kg/m^2)",
AVALU = "kg/m^2"
),
constant_parameters = c("HEIGHT"),
constant_by_vars = exprs(USUBJID)
)
#> # A tibble: 14 × 6
#> USUBJID PARAMCD PARAM AVAL AVALU VISIT
#> <chr> <chr> <chr> <dbl> <chr> <chr>
#> 1 01-701-1015 HEIGHT Height (cm) 147 cm SCREENING
#> 2 01-701-1015 WEIGHT Weight (kg) 54 kg SCREENING
#> 3 01-701-1015 WEIGHT Weight (kg) 54.4 kg BASELINE
#> 4 01-701-1015 WEIGHT Weight (kg) 53.1 kg WEEK 2
#> 5 01-701-1028 HEIGHT Height (cm) 163 cm SCREENING
#> 6 01-701-1028 WEIGHT Weight (kg) 78.5 kg SCREENING
#> 7 01-701-1028 WEIGHT Weight (kg) 80.3 kg BASELINE
#> 8 01-701-1028 WEIGHT Weight (kg) 80.7 kg WEEK 2
#> 9 01-701-1015 BMI Body Mass Index (kg/m^2) 25.0 kg/m^2 SCREENING
#> 10 01-701-1015 BMI Body Mass Index (kg/m^2) 25.2 kg/m^2 BASELINE
#> 11 01-701-1015 BMI Body Mass Index (kg/m^2) 24.6 kg/m^2 WEEK 2
#> 12 01-701-1028 BMI Body Mass Index (kg/m^2) 29.5 kg/m^2 SCREENING
#> 13 01-701-1028 BMI Body Mass Index (kg/m^2) 30.2 kg/m^2 BASELINE
#> 14 01-701-1028 BMI Body Mass Index (kg/m^2) 30.4 kg/m^2 WEEK 2
dataset_add
) and non-AVAL
variables
Use data from an additional dataset and other variables than AVAL
.
In this example, the dataset specified via dataset_add
(e.g., QS
)
is an SDTM dataset. There is no parameter code in the dataset.
The parameters
argument is therefore used to specify a list of
expressions to derive temporary parameter codes.
Then, set_values_to
is used to specify the values for the new
observations of each variable, and variable-value pairs from both
datasets are referenced via exprs()
.
QS <- tribble(
~USUBJID, ~AVISIT, ~QSTESTCD, ~QSORRES, ~QSSTRESN,
"1", "WEEK 2", "CHSF112", NA, 1,
"1", "WEEK 2", "CHSF113", "Yes", NA,
"1", "WEEK 2", "CHSF114", NA, 1,
"1", "WEEK 4", "CHSF112", NA, 2,
"1", "WEEK 4", "CHSF113", "No", NA,
"1", "WEEK 4", "CHSF114", NA, 1
)ADCHSF <- tribble(
~USUBJID, ~AVISIT, ~PARAMCD, ~QSSTRESN, ~AVAL,
"1", "WEEK 2", "CHSF12", 1, 6,
"1", "WEEK 2", "CHSF14", 1, 6,
"1", "WEEK 4", "CHSF12", 2, 12,
"1", "WEEK 4", "CHSF14", 1, 6
) %>%
mutate(QSORRES = NA_character_)
derive_param_computed(
ADCHSF,
dataset_add = QS,
by_vars = exprs(USUBJID, AVISIT),
parameters = exprs(CHSF12, CHSF13 = QSTESTCD %in% c("CHSF113"), CHSF14),
set_values_to = exprs(
AVAL = case_when(
QSORRES.CHSF13 == "Not applicable" ~ 0,
QSORRES.CHSF13 == "Yes" ~ 38,
QSORRES.CHSF13 == "No" ~ if_else(
QSSTRESN.CHSF12 > QSSTRESN.CHSF14,
25,
0
)
),
PARAMCD = "CHSF13"
)
)
#> # A tibble: 6 × 6
#> USUBJID AVISIT PARAMCD QSSTRESN AVAL QSORRES
#> <chr> <chr> <chr> <dbl> <dbl> <chr>
#> 1 1 WEEK 2 CHSF12 1 6 <NA>
#> 2 1 WEEK 2 CHSF14 1 6 <NA>
#> 3 1 WEEK 4 CHSF12 2 12 <NA>
#> 4 1 WEEK 4 CHSF14 1 6 <NA>
#> 5 1 WEEK 2 CHSF13 NA 38 <NA>
#> 6 1 WEEK 4 CHSF13 NA 25 <NA>
Specify more than one variable-value pair via set_values_to
.
In this example, the values of AVALC
, ADTM
, ADTF
, PARAMCD
,
and PARAM
are determined via distinctly defined analysis values
and parameter codes.
This is different from Example 3 as more than one variable is derived.
ADLB_TBILIALK <- tribble(
~USUBJID, ~PARAMCD, ~AVALC, ~ADTM, ~ADTF,
"1", "ALK2", "Y", "2021-05-13", NA_character_,
"1", "TBILI2", "Y", "2021-06-30", "D",
"2", "ALK2", "Y", "2021-12-31", "M",
"2", "TBILI2", "N", "2021-11-11", NA_character_,
"3", "ALK2", "N", "2021-04-03", NA_character_,
"3", "TBILI2", "N", "2021-04-04", NA_character_
) %>%
mutate(ADTM = ymd(ADTM))derive_param_computed(
dataset_add = ADLB_TBILIALK,
by_vars = exprs(USUBJID),
parameters = c("ALK2", "TBILI2"),
set_values_to = exprs(
AVALC = if_else(AVALC.TBILI2 == "Y" & AVALC.ALK2 == "Y", "Y", "N"),
ADTM = pmax(ADTM.TBILI2, ADTM.ALK2),
ADTF = if_else(ADTM == ADTM.TBILI2, ADTF.TBILI2, ADTF.ALK2),
PARAMCD = "TB2AK2",
PARAM = "TBILI > 2 times ULN and ALKPH <= 2 times ULN"
),
keep_nas = TRUE
)
#> # A tibble: 3 × 6
#> USUBJID AVALC ADTM ADTF PARAMCD PARAM
#> <chr> <chr> <date> <chr> <chr> <chr>
#> 1 1 Y 2021-06-30 D TB2AK2 TBILI > 2 times ULN and ALKPH <= 2 tim…
#> 2 2 N 2021-12-31 M TB2AK2 TBILI > 2 times ULN and ALKPH <= 2 tim…
#> 3 3 N 2021-04-04 <NA> TB2AK2 TBILI > 2 times ULN and ALKPH <= 2 tim…
For each group (with respect to the variables specified for the
by_vars
parameter) an observation is added to the output dataset if the
filtered input dataset (dataset
) or the additional dataset
(dataset_add
) contains exactly one observation for each parameter code
specified for parameters
and all contributing values like AVAL.SYSBP
are not NA
. The keep_nas
can be used to specify variables for which
NA
s are acceptable. See also Example 1b and 1c.
For the new observations the variables specified for set_values_to
are
set to the provided values. The values of the other variables of the input
dataset are set to NA
.
BDS-Findings Functions for adding Parameters/Records:
default_qtc_paramcd()
,
derive_expected_records()
,
derive_extreme_event()
,
derive_extreme_records()
,
derive_locf_records()
,
derive_param_bmi()
,
derive_param_bsa()
,
derive_param_doseint()
,
derive_param_exist_flag()
,
derive_param_exposure()
,
derive_param_framingham()
,
derive_param_map()
,
derive_param_qtc()
,
derive_param_rr()
,
derive_param_wbc_abs()
,
derive_summary_records()