# \donttest{
######## Analysis by simulated data:
## Simulate Gamma - Exponential admixtures :
list.comp <- list(f1 = "gamma", g1 = "exp",
f2 = "gamma", g2 = "exp")
list.param <- list(f1 = list(shape = 2, scale = 3), g1 = list(rate = 1/3),
f2 = list(shape = 2, scale = 3), g2 = list(rate = 1/5))
X.sim <- rsimmix(n=400, unknownComp_weight=0.8, comp.dist = list(list.comp$f1,list.comp$g1),
comp.param = list(list.param$f1, list.param$g1))$mixt.data
Y.sim <- rsimmix(n=350, unknownComp_weight=0.9, comp.dist = list(list.comp$f2,list.comp$g2),
comp.param = list(list.param$f2, list.param$g2))$mixt.data
## Real-life setting:
list.comp <- list(f1 = NULL, g1 = "exp",
f2 = NULL, g2 = "exp")
list.param <- list(f1 = NULL, g1 = list(rate = 1/3),
f2 = NULL, g2 = list(rate = 1/5))
## Estimate the unknown component weights in the two admixture models:
estim <- IBM_estimProp(sample1 =X.sim, sample2 =Y.sim, known.prop = NULL, comp.dist = list.comp,
comp.param = list.param, with.correction = FALSE, n.integ = 1000)
IBM_estimVarCov_gaussVect(x = mean(X.sim), y = mean(Y.sim), estim.obj = estim,
fixed.p1 = estim[["p.X.fixed"]], known.p = NULL, sample1=X.sim,
sample2 = Y.sim, min_size = NULL,
comp.dist = list.comp, comp.param = list.param)
# }
Run the code above in your browser using DataLab