Learn R Programming

ads (version 1.4)

kpqfun: Multiscale second-order neigbourhood analysis of a multivariate spatial point pattern

Description

(Formerly kijfun) Computes a set of K- and K12-functions for all possible pairs of marks $(p,q)$ in a multivariate spatial point pattern defined in a simple (rectangular or circular) or complex sampling window (see Details).

Usage

kpqfun(p, upto, by)

Arguments

p
a "spp" object defining a multivariate spatial point pattern in a given sampling window (see spp).
upto
maximum radius of the sample circles (see Details).
by
interval length between successive sample circles radii (see Details).

Value

  • A list of class "fads" with essentially the following components:
  • ra vector of regularly spaced distances (seq(by,upto,by)).
  • labpqa vector containing the $(p,q)$ paired levels of p$marks.
  • gpqa data frame containing values of the pair density functions $g(r)$ and $g12(r)$.
  • npqa data frame containing values of the local neighbour density functions $n(r)$ and $n12(r)$.
  • kpqa data frame containing values of the $K(r)$ and $K12(r)$ functions.
  • lpqa data frame containing values of the modified $L(r)$ and $L12(r)$ functions.
  • Each component except r is a data frame with the following variables:
  • obsa vector of estimated values for the observed point pattern.
  • theoa vector of theoretical values expected under the null hypotheses of spatial randomness (see kfun) and population independence (see k12fun).

encoding

latin1

Details

Function kpqfun is simply a wrapper to kfun and k12fun, which computes either K(r) for points of mark $p$ when $p=q$ or K12(r) between the marks $p$ and $q$ otherwise.

See Also

plot.fads, spp, kfun, k12fun, kp.fun.

Examples

Run this code
data(BPoirier)
  BP <- BPoirier
  # multivariate spatial point pattern in a rectangle sampling window 
  swrm <- spp(BP$trees, win=BP$rect, marks=BP$species)
  kpqswrm <- kpqfun(swrm, 25, 1)
  plot(kpqswrm)
  
 # multivariate spatial point pattern in a circle with radius 50 centred on (55,45)
  swcm <- spp(BP$trees, win=c(55,45,45), marks=BP$species)
  kpqswcm <- kpqfun(swcm, 25, 1)
  plot(kpqswcm)
  
  # multivariate spatial point pattern in a complex sampling window
  swrtm <- spp(BP$trees, win=BP$rect, tri=BP$tri2, marks=BP$species)
  kpqswrtm <- kpqfun(swrtm, 25, 1)
  plot(kpqswrtm)

Run the code above in your browser using DataLab