# NOT RUN {
data(admix)
# EXAMPLE 1
# Generate the admixture signal
AdexPCA <- signal(admix$data,popA="popA",popB="popB",populations=admix$populations,tol=0.001,
n.signal=NULL)
# Plot the resulting PCA
plot(AdexPCA$pc.ind[,1],AdexPCA$pc.ind[,2],col=admix$colplot,xlab="PC1",ylab="PC2",pch=16)
legend("bottomright",c("popA","popB","popAB"),col=c(3,4,2),pch=16)
# EXAMPLE 2
# Generate the admixture signal with windowing
AdexPCA2 <- signal(admix$data,popA="popA",popB="popB",populations=admix$populations,tol=0.001,
n.signal=1000,window.size=0.01)
# Plot resulting admixture signal for one individual
plotsignal(AdexPCA2,ind="AD00001",popA=AdexPCA2$popA,popB=AdexPCA2$popB)
# EXAMPLE 3
# Generate the admixture signal with windowing
# As in EXAMPLE 2 but with n.signal reduced to 100 to provide disjoint windows
AdexPCA3 <- signal(admix$data,popA="popA",popB="popB",populations=admix$populations,tol=0.001,
n.signal=100,window.size=0.01)
# Plot resulting admixture signal for one individual
plotsignal(AdexPCA3,ind="AD00001",popA=AdexPCA2$popA,popB=AdexPCA2$popB)
# EXAMPLE 4
# Generate the admixture signal in terms of genetic distance
# As in EXAMPLE 2 but with genmap specified so that signals are formulated using genetic distances
AdexPCA4 <- signal(admix$data,popA="popA",popB="popB",populations=admix$populations,tol=0.001,
n.signal=1000,window.size=0.01,genmap=admix$map[,2])
# Plot resulting admixture signal for one individual
plotsignal(AdexPCA4,ind="AD00001",popA=AdexPCA4$popA,popB=AdexPCA4$popB)
# }
Run the code above in your browser using DataLab