Last chance! 50% off unlimited learning
Sale ends in
Calculates the bootstrap standard errors in subpopulation.
boot.sd2.sub(x.sub,x,weight.sub,weight,k,alpha,nsim,boot.index=c("r.cha","r.fgt"),gamma)
the bootstrap error
bootstrap summary
income vector of subpopulation
income vector of population
weight vector of subpopulation
weight vector of population
multiple of the median income
parameter of the index: alpha
> 0 for "r.cha
", alpha
> 1 for "r.fgt
"
the number of replications
the index for which the error is estimated
confidence level
Alicja Wolny-Dominiak
The function uses quantile method of calculating bootstrap confidence intervals.
Brzezinski M. (2010) Income affluence in Poland. Social Indicators Research, 99, pp. 285-299.
data(affluence)
affluence$weight <- rep(1, nrow(affluence))
aff.sub <- subset(affluence, education == 2)
x <- aff.sub$income
boot.sd2.sub(x, affluence$income, aff.sub$weight, affluence$weight, 2, 2, 10, "r.cha", 0.95)
boot.sd2.sub(x, affluence$income, aff.sub$weight, affluence$weight, 2, 2, 10, "r.fgt", 0.95)
Run the code above in your browser using DataLab