library(agricolae)
# example 1
# Experimental data,
# replication rep= 4
# Mean square error, MSerror = 1.8
# 12 environment
# 17 genotype = 1,2,3,.., 17
# yield averages of 13 genotypes in localities
V1 <- c(10.2,8.8,8.8,9.3,9.6,7.2,8.4,9.6,7.9,10,9.3,8.0,10.1,9.4,10.8,6.3,7.4)
V2 <- c(7,7.8,7.0,6.9,7,8.3,7.4,6.5,6.8,7.9,7.3,6.8,8.1,7.1,7.1,6.4,4.1)
V3 <- c(5.3, 4.4, 5.3, 4.4, 5.5, 4.6, 6.2, 6.0, 6.5, 5.3, 5.7, 4.4, 4.2,5.6,5.8,3.9,3.8)
V4 <- c(7.8, 5.9, 7.3, 5.9, 7.8, 6.3, 7.9, 7.5, 7.6, 5.4, 5.6, 7.8, 6.5,8.1,7.5,5.0,5.4)
V5 <- c(9, 9.2, 8.8, 10.6, 8.3, 9.3, 9.6, 8.8, 7.9, 9.1, 7.7, 9.5, 9.4,9.4,10.3,8.8,8.7)
V6 <- c(6.9, 7.7, 7.9, 7.9, 7, 8.9, 9.4, 7.9, 6.5, 7.2, 5.4, 6.2, 7.2,8.8,7.3,7.1,6.4)
V7 <- c(4.9, 2.5, 3.4, 2.5, 3,2.5, 3.6, 5.6,3.8, 3.9, 3.0, 3.0, 2.5,2.6,3.8,2.8,1.6)
V8 <- c(6.4, 6.4, 8.1, 7.2, 7.5, 6.6, 7.7, 7.6, 7.8, 7.5, 6.0, 7.2, 6.8,7.6,6.9,7.2,7.3)
V9 <- c(8.4, 6.1, 6.8, 6.1, 8.2, 6.9, 6.9, 9.1, 9.2, 7.7, 6.7, 7.8, 6.5,5.2,8.3,6.8,7.1)
V10 <-c(8.7, 9.4, 8.8, 7.9, 7.8, 7.8, 11.4, 9.9, 8.6, 8.5, 8.0, 8.3, 9.1,11.0,8.1,7.8,8.0)
V11 <-c(5.4, 5.2, 5.6, 4.6, 4.8, 5.7, 6.6, 6.8, 5.2, 4.8, 4.9, 5.4, 4.5,5.6,7.0,6.0,5.6)
V12 <-c(8.6, 8.0, 9.2, 8.1, 8.3, 8.9, 8.6, 9.6, 9.5, 7.7, 7.6, 8.3, 6.6,9.5,9.0,9.0,8.5)
data<-data.frame(V1,V2,V3,V4,V5,V6,V7,V8,V9,V10,V11,V12)
rownames(data)<-LETTERS[1:17]
stability.par(data, rep=4, MSerror=1.8, alpha=0.1, main="Genotype")
#example 2 covariable. precipitation
precipitation<- c(1000,1100,1200,1300,1400,1500,1600,1700,1800,1900,2000,2100)
stability.par(data, rep=4, MSerror=1.8, alpha=0.1, main="Genotype",
cova=TRUE, name.cov="Precipitation", file.cov=precipitation)
Run the code above in your browser using DataLab