This function checks if different objects are based on the same text embedding model. This is necessary to ensure that classifiers are used only with data generated through compatible embedding models.
check_embedding_models(object_list, same_class = FALSE)
Returns TRUE
if all objects refer to the same text embedding model.
FALSE
in all other cases.
list
of object of class EmbeddedText or
TextEmbeddingClassifierNeuralNet.
bool
TRUE
if all object must be from the same class.
Other Auxiliary Functions:
array_to_matrix()
,
calc_standard_classification_measures()
,
clean_pytorch_log_transformers()
,
create_iota2_mean_object()
,
create_synthetic_units()
,
generate_id()
,
get_coder_metrics()
,
get_folds()
,
get_n_chunks()
,
get_stratified_train_test_split()
,
get_synthetic_cases()
,
get_train_test_split()
,
is.null_or_na()
,
matrix_to_array_c()
,
split_labeled_unlabeled()
,
summarize_tracked_sustainability()
,
to_categorical_c()