Function creates cross-validation samples and ensures that the relative frequency for every category/label within a fold equals the relative frequency of the category/label within the initial data.
get_folds(target, k_folds)
Return a list
with the following components:
val_sample:
vector
of strings
containing the names of cases of the validation sample.
train_sample:
vector
of strings
containing the names of cases of the train sample.
n_folds:
int
Number of realized folds.
unlabeled_cases:
vector
of strings
containing the names of the unlabeled cases.
Named factor
containing the relevant labels/categories. Missing cases
should be declared with NA
.
int
number of folds.
Other Auxiliary Functions:
array_to_matrix()
,
calc_standard_classification_measures()
,
check_embedding_models()
,
clean_pytorch_log_transformers()
,
create_iota2_mean_object()
,
create_synthetic_units()
,
generate_id()
,
get_coder_metrics()
,
get_n_chunks()
,
get_stratified_train_test_split()
,
get_synthetic_cases()
,
get_train_test_split()
,
is.null_or_na()
,
matrix_to_array_c()
,
split_labeled_unlabeled()
,
summarize_tracked_sustainability()
,
to_categorical_c()