This function creates a stratified random sample.The difference to get_train_test_split is that this function does not require text embeddings and does not split the text embeddings into a train and validation sample.
get_stratified_train_test_split(targets, val_size = 0.25)list which contains the names of the cases belonging to the train
sample and to the validation sample.
Named vector containing the labels/categories for each case.
double Value between 0 and 1 indicating how many cases of
each label/category should be part of the validation sample.
Other Auxiliary Functions:
array_to_matrix(),
calc_standard_classification_measures(),
check_embedding_models(),
clean_pytorch_log_transformers(),
create_iota2_mean_object(),
create_synthetic_units(),
generate_id(),
get_coder_metrics(),
get_folds(),
get_n_chunks(),
get_synthetic_cases(),
get_train_test_split(),
is.null_or_na(),
matrix_to_array_c(),
split_labeled_unlabeled(),
summarize_tracked_sustainability(),
to_categorical_c()