This function creates a stratified random sample.The difference to get_train_test_split is that this function does not require text embeddings and does not split the text embeddings into a train and validation sample.
get_stratified_train_test_split(targets, val_size = 0.25)
list
which contains the names of the cases belonging to the train
sample and to the validation sample.
Named vector
containing the labels/categories for each case.
double
Value between 0 and 1 indicating how many cases of
each label/category should be part of the validation sample.
Other Auxiliary Functions:
array_to_matrix()
,
calc_standard_classification_measures()
,
check_embedding_models()
,
clean_pytorch_log_transformers()
,
create_iota2_mean_object()
,
create_synthetic_units()
,
generate_id()
,
get_coder_metrics()
,
get_folds()
,
get_n_chunks()
,
get_synthetic_cases()
,
get_train_test_split()
,
is.null_or_na()
,
matrix_to_array_c()
,
split_labeled_unlabeled()
,
summarize_tracked_sustainability()
,
to_categorical_c()