This class contains all methods shared by all BaseModels.
Does return a new object of this class.
aifeducation::AIFEMaster -> aifeducation::AIFEBaseModel -> BaseModelCore
Tokenizer('TokenizerBase')
Objects of class TokenizerBase.
Inherited methods
aifeducation::AIFEMaster$get_all_fields()aifeducation::AIFEMaster$get_documentation_license()aifeducation::AIFEMaster$get_ml_framework()aifeducation::AIFEMaster$get_model_config()aifeducation::AIFEMaster$get_model_description()aifeducation::AIFEMaster$get_model_info()aifeducation::AIFEMaster$get_model_license()aifeducation::AIFEMaster$get_package_versions()aifeducation::AIFEMaster$get_private()aifeducation::AIFEMaster$get_publication_info()aifeducation::AIFEMaster$get_sustainability_data()aifeducation::AIFEMaster$is_configured()aifeducation::AIFEMaster$is_trained()aifeducation::AIFEMaster$set_documentation_license()aifeducation::AIFEMaster$set_model_description()aifeducation::AIFEMaster$set_model_license()
create_from_hf()Creates BaseModel from a pretrained model
BaseModelCore$create_from_hf(model_dir = NULL, tokenizer_dir = NULL)model_dir
tokenizer_dirstring Path to the directory where the tokenizer is saved. Allowed values: any
Does return a new object of this class.
train()Traines a BaseModel
BaseModelCore$train(
text_dataset,
p_mask = 0.15,
whole_word = TRUE,
val_size = 0.1,
n_epoch = 1L,
batch_size = 12L,
max_sequence_length = 250L,
full_sequences_only = FALSE,
min_seq_len = 50L,
learning_rate = 0.003,
sustain_track = FALSE,
sustain_iso_code = NULL,
sustain_region = NULL,
sustain_interval = 15L,
sustain_log_level = "warning",
trace = TRUE,
pytorch_trace = 1L,
log_dir = NULL,
log_write_interval = 2L
)text_dataset
p_mask
whole_word
val_size
n_epoch
batch_size
max_sequence_length
full_sequences_only
min_seq_len
learning_rate
sustain_track
sustain_iso_code
sustain_region
sustain_interval
sustain_log_level
trace
pytorch_trace
log_dir
log_write_interval
Does nothing return.
count_parameter()Method for counting the trainable parameters of a model.
BaseModelCore$count_parameter()Returns the number of trainable parameters of the model.
plot_training_history()Method for requesting a plot of the training history. This method requires the R package 'ggplot2' to work.
BaseModelCore$plot_training_history(
y_min = NULL,
y_max = NULL,
text_size = 10L
)y_min
y_max
text_size
Returns a plot of class ggplot visualizing the training process.
get_special_tokens()Method for receiving the special tokens of the model
BaseModelCore$get_special_tokens()Returns a matrix containing the special tokens in the rows
and their type, token, and id in the columns.
get_tokenizer_statistics()Tokenizer statistics
BaseModelCore$get_tokenizer_statistics()Returns a data.frame containing the tokenizer's statistics.
fill_mask()Method for calculating tokens behind mask tokens.
BaseModelCore$fill_mask(masked_text, n_solutions = 5L)masked_text
n_solutions
Returns a list containing a data.frame for every
mask. The data.frame contains the solutions in the rows and reports
the score, token id, and token string in the columns.
dir_pathPath to the directory where to save the object.
folder_namestring Name of the folder where the model should be saved. Allowed values: any
Function does nothing return. It is used to save an object on disk.
load_from_disk()Loads an object from disk and updates the object to the current version of the package.
BaseModelCore$load_from_disk(dir_path)dir_pathPath where the object set is stored.
Function does nothin return. It loads an object from disk.
get_model()Get 'PyTorch' model
BaseModelCore$get_model()Returns the underlying 'PyTorch' model.
get_model_type()Type of the underlying model.
BaseModelCore$get_model_type()Returns a string describing the model's architecture.
get_final_size()Size of the final layer.
BaseModelCore$get_final_size()Returns an int describing the number of dimensions of the last
hidden layer.
get_flops_estimates()Flop estimates
BaseModelCore$get_flops_estimates()Returns a data.frame containing statistics about the flops.
set_publication_info()Method for setting the bibliographic information of the model.
BaseModelCore$set_publication_info(type, authors, citation, url = NULL)typestring Type of information which should be changed/added.
developer, and modifier are possible.
authorsList of people.
citationstring Citation in free text.
urlstring Corresponding URL if applicable.
Function does not return a value. It is used to set the private members for publication information of the model.
estimate_sustainability_inference_fill_mask()Calculates the energy consumption for inference of the given task.
BaseModelCore$estimate_sustainability_inference_fill_mask(
text_dataset = NULL,
n = NULL,
sustain_iso_code = NULL,
sustain_region = NULL,
sustain_interval = 15L,
sustain_log_level = "warning",
trace = TRUE
)text_dataset
n
sustain_iso_code
sustain_region
sustain_interval
sustain_log_level
trace
Returns nothing. Method saves the statistics internally.
The statistics can be accessed with the method get_sustainability_data("inference")
calc_flops_architecture_based()Calculates FLOPS based on model's architecture.
BaseModelCore$calc_flops_architecture_based(batch_size, n_batches, n_epochs)batch_size
n_batches
n_epochs
Returns a data.frame storing the estimates.
clone()The objects of this class are cloneable with this method.
BaseModelCore$clone(deep = FALSE)deepWhether to make a deep clone.
Other R6 Classes for Developers:
AIFEBaseModel,
AIFEMaster,
ClassifiersBasedOnTextEmbeddings,
DataManagerClassifier,
LargeDataSetBase,
ModelsBasedOnTextEmbeddings,
TEClassifiersBasedOnProtoNet,
TEClassifiersBasedOnRegular,
TokenizerBase