Learn R Programming

airGR (version 1.0.15.2)

ErrorCrit_RMSE: Error criterion based on the RMSE

Description

Function which computes an error criterion based on the root mean square error (RMSE).

Usage

ErrorCrit_RMSE(InputsCrit, OutputsModel, warnings = TRUE, verbose = TRUE)

Arguments

InputsCrit

[object of class InputsCrit] see CreateInputsCrit for details

OutputsModel

[object of class OutputsModel] see RunModel_GR4J or RunModel_CemaNeigeGR4J for details

warnings

(optional) [boolean] boolean indicating if the warning messages are shown, default = TRUE

verbose

(optional) [boolean] boolean indicating if the function is run in verbose mode or not, default = TRUE

Value

[list] list containing the function outputs organised as follows:

$CritValue [numeric] value of the criterion
$CritName [character] name of the criterion
$CritBestValue [numeric] theoretical best criterion value
$Multiplier [numeric] integer indicating whether the criterion is indeed an error (+1) or an efficiency (-1)
$Ind_notcomputed [numeric] indices of the time steps where InputsCrit$BoolCrit = FALSE or no data is available

Details

In addition to the criterion value, the function outputs include a multiplier (-1 or +1) which allows the use of the function for model calibration: the product CritValue * Multiplier is the criterion to be minimised (Multiplier = +1 for RMSE).

See Also

ErrorCrit_NSE, ErrorCrit_KGE, ErrorCrit_KGE2

Examples

Run this code
# NOT RUN {
## see example of the ErrorCrit function
# }

Run the code above in your browser using DataLab