Carry out several keyword cleaning processes automatically and return a tidy table with document ID and keywords.
keyword_clean(
df,
id = "id",
keyword = "keyword",
sep = ";",
rmParentheses = TRUE,
rmNumber = TRUE,
lemmatize = FALSE,
lemmatize_dict = NULL
)
A tbl with two columns, namely document ID and cleaned keywords.
A data.frame containing at least two columns with document ID and keyword strings with separators.
Quoted characters specifying the column name of document ID.Default uses "id".
Quoted characters specifying the column name of keywords.Default uses "keyword".
Separator(s) of keywords. Default uses ";".
Remove the contents in the parentheses (including the parentheses) or not. Default uses TRUE.
Remove the pure number sequence or no. Default uses TRUE.
Lemmatize the keywords or not. Lemmatization is supported by `lemmatize_strings` function in `textstem` package.Default uses FALSE.
A dictionary of base terms and lemmas to use for replacement.
Only used when the lemmatize parameter is TRUE
.
The first column should be the full word form in lower case
while the second column is the corresponding replacement lemma.
Default uses NULL
, this would apply the default dictionary used in
lemmatize_strings
function.
The entire cleaning processes include:
1.Split the text with separators;
2.Remove the contents in the parentheses (including the parentheses);
3.Remove white spaces from start and end of string and reduces repeated white spaces inside a string;
4.Remove all the null character string and pure number sequences;
5.Convert all letters to lower case;
6.Lemmatization.
Some of the procedures could be suppressed or activated with parameter adjustments.
Default setting did not use lemmatization, it is suggested to use keyword_merge
to
merge the keywords afterward.
keyword_merge
library(akc)
bibli_data_table
bibli_data_table %>%
keyword_clean(id = "id",keyword = "keyword")
Run the code above in your browser using DataLab