powered by
Functions for the four-parameter kappa distribution.
pkappa4(x, mu, sigma, h, k)dkappa4(x, mu, sigma, h, k)qkappa4(x, mu, sigma, h, k)rkappa4(n, mu, sigma, h, k)dddkappa4(x, mu, sigma, h, k)kappa4cond(mu, sigma, h, k)kappa4tc(h, mu, sigma)
dkappa4(x, mu, sigma, h, k)
qkappa4(x, mu, sigma, h, k)
rkappa4(n, mu, sigma, h, k)
dddkappa4(x, mu, sigma, h, k)
kappa4cond(mu, sigma, h, k)
kappa4tc(h, mu, sigma)
A data point, or quantile, at which the four-parameter kappa distribution should be evaluated.
A real value representing the location of the distribution.
A positive real number representing the scale parameter of the distribution.
Real numbers representing shape parameters of the distribution.
Number of random variates to generate.
pkappa4: The cumulative distribution function at the point x.
x
dkappa4: The density function at the point x.
qkappa4: The xth quantile of the distribution.
rkappa4: Randomly generated numbers from the distribution.
dddkappa4: The second derivative of dkappa4.
kappa4cond: The resultant induction period (IP).
kappa4tc: A list with the following components:
$par: The k shape parameter corresponding to a given h parameter for the time-conductivity problem.
$abstol: The absolute tolerance for the numerical optimisation.
$fail: A code relating to the optimisation routine.
$fncount: Number of function calls.
# NOT RUN { pkappa4(1, 1, 2, 0.5, 2) dkappa4(1, 1, 2, 0.5, 2) qkappa4(0.25, 1, 2, 0.5, 2) rkappa4(10, 1, 2, 0.5, 2) dddkappa4(1, 1, 2, 0.5, 2) kappa4cond(1, 2, 0.5, 2) kappa4tc(-4, 0, 1) # }
Run the code above in your browser using DataLab