if (FALSE) {
	data("amExample5")
	## Produce amDataset object
	myDataset <-
		amDataset(
			amExample5,
			missingCode = "-99",
			indexColumn = 1,
			metaDataColumn = 2,
			ignoreColumn = "gender"
			)
	## Typical usage
	myPairwise <-
		amPairwise(
			myDataset,
			alleleMismatch = 2
			)
	## Display analysis as HTML in default browser
	summary.amPairwise(
		myPairwise,
		html = TRUE
		)
	## Save analysis to HTML file
	summary.amPairwise(
		myPairwise,
		html = "myPairwise.htm"
		)
	## Save analysis to CSV file
	summary.amPairwise(
		myPairwise,
		csv = "myPairwise.csv"
		)
	## Display analysis as formatted text on the console
	summary.amPairwise(myPairwise)
	## Compare one dataset against a second
	## Both must have same number of allele columns
	## Here we create two datasets artificially from one for illustration purposes
	myDatasetA <-
		amDataset(
			amExample5[sample(nrow(amExample5))[1:25], ],
			missingCode = "-99",
			indexColumn = 1,
			ignoreColumn = 2
			)
	myDatasetB <-
		amDataset(
			amExample5[sample(nrow(amExample5))[1:100], ],
			missingCode = "-99",
			indexColumn = 1,
			ignoreColumn = 2
			)
	myPairwise2 <-
		amPairwise(
			myDatasetA,
			myDatasetB,
			alleleMismatch = 3
			)
	summary.amPairwise(
		myPairwise2,
		html = TRUE
		)
	}
Run the code above in your browser using DataLab