# \donttest{
library(dplyr)
# Divide the train data set and the test data set.
sb <- rpart::kyphosis %>%
split_by(Kyphosis)
# Extract the train data set from original data set.
train <- sb %>%
extract_set(set = "train")
# Extract the test data set from original data set.
test <- sb %>%
extract_set(set = "test")
# Sampling for unbalanced data set using SMOTE(synthetic minority over-sampling technique).
train <- sb %>%
sampling_target(seed = 1234L, method = "ubSMOTE")
# Cleaning the set.
train <- train %>%
cleanse
# Run the model fitting.
result <- run_models(.data = train, target = "Kyphosis", positive = "present")
result
# Predict the model. (Case 1)
pred <- run_predict(result, test)
pred
# Calculate performace metrics. (Case 1)
perf <- run_performance(pred)
perf
perf$performance
# Predict the model. (Case 2)
pred <- run_predict(result, test[, -1])
pred
# Calculate performace metrics. (Case 2)
perf <- run_performance(pred, pull(test[, 1]))
perf
perf$performance
# Convert to matrix for compare performace.
sapply(perf$performance, "c")
# }
Run the code above in your browser using DataLab