# see vignette for a more realistic example
# these next lines just write out a BAM file from R
# typically you would already have a BAM file
library(alpineData)
library(GenomicAlignments)
library(rtracklayer)
gap <- ERR188088()
dir <- system.file(package="alpineData", "extdata")
bam.file <- c("ERR188088" = file.path(dir,"ERR188088.bam"))
export(gap, con=bam.file)
library(GenomicRanges)
library(BSgenome.Hsapiens.NCBI.GRCh38)
data(preprocessedData)
readlength <- 100
minsize <- 125 # see vignette how to choose
maxsize <- 175 # see vignette how to choose
# here a very small subset, should be ~100 genes
gene.names <- names(ebt.fit)[6:8]
names(gene.names) <- gene.names
fragtypes <- lapply(gene.names, function(gene.name) {
buildFragtypes(ebt.fit[[gene.name]],
Hsapiens, readlength,
minsize, maxsize)
})
models <- list(
"GC" = list(formula = "count ~ ns(gc,knots=gc.knots,
Boundary.knots=gc.bk) + gene",
offset=c("fraglen"))
)
fitpar <- fitBiasModels(genes=ebt.fit[gene.names],
bam.file=bam.file,
fragtypes=fragtypes,
genome=Hsapiens,
models=models,
readlength=readlength,
minsize=minsize,
maxsize=maxsize)
Run the code above in your browser using DataLab