
Last chance! 50% off unlimited learning
Sale ends in
Graphics for Principal component Analysis
# S3 method for acp
plot(x,i=1,j=2,text=TRUE,label='Composants',col='darkblue',
main='Individuals PCA',variables=TRUE,individual.label=NULL,...)
# S3 method for acp
biplot(x,i=1,j=2,label='Composants',col='darkblue',length=0.1,
main='Variables PCA',circle=TRUE,...)
plot2(x,pourcent=FALSE,eigen=TRUE,label='Comp.',col='lightgrey',
main='Scree Graph',ylab='Eigen Values')
plotAll(x)
Graphics:
plot.acp
PCA for lines (individuals)
plot.acp
PCA for columns (variables)
plot2
Eigen values diagram (Scree Graph)
plotAll
Plot both 3 graphs
Result of acp or princomp
X axis
Y axis
a logical value indicating whether we use text or points for plot
a logical value indicating whether we use pourcentage of values
a logical value indicating whether we use eigen values or standard deviation
label for X and Y axis
labels naming individuals
Color of plot
Title of graphic
Y label
length of arrows
a logical value indicating whether we display circle or variables
cex, pch, and other options; see points.
Antoine Lucas
acpgen,acprob, princomp
data(lubisch)
lubisch <- lubisch[,-c(1,8)]
p <- acp(lubisch)
plotAll(p)
Run the code above in your browser using DataLab