## The function is currently defined as
rbeta_ab_fc <- function(Z,Sab,rho,X,mX,mXt,XX,XXt,Xr,Xc,s2=1)
{
###
p<-dim(X)[3]
Se<-matrix(c(1,rho,rho,1),2,2)*s2
iSe2<-mhalf(solve(Se))
td<-iSe2[1,1] ; to<-iSe2[1,2]
Sabs<-iSe2%*%Sab%*%iSe2
tmp<-eigen(Sabs)
k<-sum(zapsmall(tmp$val)>0 )
###
###
mXs<-td*mX+to*mXt # matricized transformed X
XXs<-(to^2+td^2)*XX + 2*to*td*XXt # sum of squares for transformed X
Zs<-td*Z+to*t(Z)
zr<-rowSums(Zs) ; zc<-colSums(Zs) ; zs<-sum(zc) ; n<-length(zr)
###
## dyadic and prior contributions
if(p>0)
{
lb<- crossprod(mXs,c(Zs))
Qb<- XXs + XX/nrow(mXs)
}
##
## row and column reduction
ab<-matrix(0,nrow(Z),2)
if(k>0)
{
n<-nrow(Z)
G<-tmp$vec[,1:k] %*% sqrt(diag(tmp$val[1:k],nrow=k))
K<-matrix(c(0,1,1,0),2,2)
A<-n*t(G)%*%G + diag(k)
B<-t(G)%*%K%*%G
iA0<-solve(A)
C0<- -solve(A+ n*B)%*%B%*%iA0
iA<-G%*%iA0%*%t(G)
C<-G%*%C0%*%t(G)
if(p>0)
{
Xsr<-td*Xr + to*Xc # row sums for transformed X
Xsc<-td*Xc + to*Xr # col sums for transformed X
Xss<-colSums(Xsc)
lb<- lb - (iA[1,1]*crossprod(Xsr,zr) + iA[2,2]*crossprod(Xsc,zc) +
iA[1,2]*(crossprod(Xsr,zc) + crossprod(Xsc,zr)) +
sum(C)*Xss*zs )
tmp<-crossprod(Xsr,Xsc)
Qb<- Qb - ( iA[1,1]*crossprod(Xsr,Xsr) + iA[2,2]*crossprod(Xsc,Xsc) +
iA[2,1]*(tmp+t(tmp)) + sum(C)*Xss%*%t(Xss) )
}
}
##
if(p>0)
{
V<-solve(Qb)
m<-V%*%(lb)
beta<-c(rmvnorm(1,m,V))
}
####
#### simulate a, b
if(k>0)
{
E<- Zs-Xbeta(td*X+to*aperm(X,c(2,1,3)),beta)
er<-rowSums(E) ; ec<-colSums(E) ; es<-sum(ec) ; n<-length(er)
m<-t(t(crossprod(rbind(er,ec),t(iA0%*%t(G)))) + rowSums(es*C0%*%t(G)) )
hiA0<-mhalf(iA0)
e<-matrix(rnorm(n*k),n,k)
w<-m+ t( t(e%*%hiA0) - c(((hiA0-mhalf(iA0+n*C0))/n)%*% colSums(e) ) )
ab<- w%*%t(G)%*%solve(iSe2)
}
list(beta=beta,a=ab[,1],b=ab[,2] )
}
Run the code above in your browser using DataLab