Learn R Programming

analogue (version 0.10-0)

summary.bootstrap.mat: Summarise bootstrap resampling for MAT models

Description

summary method for class "bootstrap.mat".

Usage

## S3 method for class 'bootstrap.mat':
summary(object, \dots)

Arguments

object
an object of class "bootstrap.mat", usually the result of a call to bootstrap.mat.
...
arguments passed to or from other methods.

Value

  • A data frame with the following components:
  • observedvector of observed environmental values.
  • modela list containing the apparent or non-bootstrapped estimates for the training set. With the following components: [object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
  • bootstrapa list containing the bootstrap estimates for the training set. With the following components: [object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
  • sample.errorsa list containing the bootstrap-derived sample specific errors for the training set. With the following components: [object Object],[object Object],[object Object]
  • weightedlogical; whether the weighted mean was used instead of the mean of the environment for k-closest analogues
  • autological; whether k was choosen automatically or user-selected
  • n.bootnumeric; the number of bootstrap samples taken
  • callthe matched call
  • callmodel type
  • predictionsa list containing the apparent and bootstrap-derived estimates for the new data, with the following components: [object Object],[object Object],[object Object],[object Object]

See Also

bootstrap.mat, mat, summary.

Examples

Run this code
## continue the RLGH example from ?join
example(join)

## fit the MAT model using the squared chord distance measure
swap.mat <- mat(swapdiat, swappH, method = "SQchord")

## bootstrap training set
swap.boot <- bootstrap(swap.mat, k = 10, n.boot = 100)
swap.boot
summary(swap.boot)

Run the code above in your browser using DataLab