
## S3 method for class 'minDC':
plot(x, depths, use.labels = FALSE,
quantiles = TRUE, rev.x = TRUE, type = "l",
xlim, ylim, xlab = "", ylab = "Dissimilarity",
main = "", sub = NULL,
col.quantile = "red", lty.quantile = "dotted",
...)
"minDC"
.use.labels = TRUE
, the function will attempt to
derive suitable values for you. See Details beloreconPlot
attempt to derive
values for argument depths
from the names of the predicted
values? Only use if depths
is missing. See Details below.par
and argument
"type"
."quantiles"
.par
). Currently ignored.depths
is used to provide the depth or age
axis, against which the predicted values are plotted. If depths
is not provided, then the function will try to
derive the appropriate values from the labels of the predictions if
use.labels = TRUE
. You must provide depths
or set
use.labels = TRUE
otherwise an error will result. The derived
labels will be coerced to numerics. If your labels are coercible, then
you'll either get nonsense on the plot or an error from R. If so,
provide suitable values for depths
.
minDC
## Imbrie and Kipp example
## load the example data
data(ImbrieKipp)
data(SumSST)
data(V12.122)
## merge training and test set on columns
dat <- join(ImbrieKipp, V12.122, verbose = TRUE)
## extract the merged data sets and convert to proportions
ImbrieKipp <- dat[[1]] / 100
V12.122 <- dat[[2]] / 100
## fit the MAT model using the chord distance measure
(ik.mat <- mat(ImbrieKipp, SumSST, method = "chord"))
## reconstruct for the RLGH core data
v12.mat <- predict(ik.mat, V12.122)
## extract the minimum DC values
v12.mdc <- minDC(v12.mat)
v12.mdc
## draw a plot of minimum DC by time
plot(v12.mdc, use.labels = TRUE, xlab = "Depth (cm.)")
Run the code above in your browser using DataLab