## S3 method for class 'mat':
predict(object, newdata, k, weighted = FALSE,
bootstrap = FALSE, n.boot = 1000,
probs = c(0.01, 0.025, 0.05, 0.1), ...)
mat
.x
in mat
. See example below or
k
is chosen
automatically as the k
that achieves lowest RMSE.newdata
is
missing.predict.mat
is returned if newdata
is
supplied, otherwise an object of fitted.mat
is
returned. If bootstrap = FALSE
then not all components will be
returned.estimated
"y"
, the
environment.}
residuals
r.squared
"y"
.}
avg.bias
max.bias
rmsep
k
estimated
"y"
.}
residuals
"y"
.}
r.squared
"y"
.}
avg.bias
max.bias
rmsep
s1
s2
k
rmsep
s1
s2
"k"
was choosen automatically or
user-selected.observed
newenv
is provided.}
model
model
, above.
}
bootstrap
bootstrap
, above.}
sample.errors
sample.errors
, above.}bootstrap(model, newdata,
...)
- see bootstrap.mat
.mat
, bootstrap.mat
## continue the RLGH and SWAP example from ?join
example(join)
## fit the MAT model using the squared chord distance measure
swap.mat <- mat(swapdiat, swappH, method = "SQchord")
## predict for RLGH data
predict(swap.mat, rlgh)
Run the code above in your browser using DataLab