
Last chance! 50% off unlimited learning
Sale ends in
parameters
nParameters
name
expression
BellMF-class
and GaussianMF-class
Other Membership Functions: BellMF
,
BellMF-class
; GaussianMF
,
GaussianMF-class
;
MembershipFunction
,
MembershipFunction-class
;
[,MembershipFunction-method
,
[<-,MembershipFunction-method
,
extract-methods
,
extract-methods
; derivateMF
,
derivateMF
, derivateMF
,
derivateMF
, derivateMF
,
derivateMF,BellMF-method
,
derivateMF,GaussianMF-method
,
derivateMF,MembershipFunction-method
,
derivateMF,NormalizedGaussianMF-method
,
derivateMF-methods
;
evaluateMF
, evaluateMF
,
evaluateMF
, evaluateMF
,
evaluateMF
,
evaluateMF,BellMF-method
,
evaluateMF,GaussianMF-method
,
evaluateMF,MembershipFunction-method
,
evaluateMF,NormalizedGaussianMF-method
,
evaluateMF-methods
;
print,MembershipFunction-method
;
show,MembershipFunction-method
#NormalizedGaussianMF example I
#A normalized Gaussian membership function with default paramateres (mu=0, sigma=1)
#The derivate of the first parameter at x, should be 1
#The derivate of the first parameter at x, should be 0
#The derivate on "mu" parameter at x, should be 0
normalizedGaussian <- new(Class="NormalizedGaussianMF")
normalizedGaussian
evaluateMF(object=normalizedGaussian, x=0)
derivateMF(object=normalizedGaussian, x=0, i=1)
derivateMF(object=normalizedGaussian, x=0, i="mu")
#
#NormalizedGaussianMF example II
#A normalized Gaussian membership function with parameters (mu=0, sigma=1)
#The derivate of the first parameter at x, should be 1
#The derivate of the first parameter at x, should be 0
#The derivate on "mu" parameter at x, should be 0
normalizedGaussian2 <- new(Class="NormalizedGaussianMF",
parameters=c(mu=0,sigma=1))
normalizedGaussian2
evaluateMF(object=normalizedGaussian2, x=0)
derivateMF(object=normalizedGaussian2, x=0, i=1)
derivateMF(object=normalizedGaussian2, x=0, i="mu")
Run the code above in your browser using DataLab