Learn R Programming

⚠️There's a newer version (1.5) of this package.Take me there.

anoint (version 1.4)

Analysis of Interactions

Description

The tools in this package are intended to help researchers assess multiple treatment-covariate interactions with data from a parallel-group randomized controlled clinical trial.

Copy Link

Version

Install

install.packages('anoint')

Monthly Downloads

231

Version

1.4

License

GPL (>= 2)

Maintainer

S A Kovalchik

Last Published

July 19th, 2015

Functions in anoint (1.4)

pim.subsets

Perform all subsets proportional interactions modeling
anoint

Create analysis of interactions object
coef

Get coefs from pim object.
fits

Extract fits from anoint.fit object
anoint-package

Analysis of interactions for generalized linear models (GLM) or Cox proportional hazards regression models.
anoint.formula

Create a formula.anoint object
forest.subsets

Subsets forest plot for proportional interactions models
data.anoint

Generate a clinical trial data set under a specified multiple interaction model
vcov

Get variance-covariance from pim object.
show-anoint.fit

Show table of LRT global test results for anoint.fit object
pim-class

Class "pim"
predict

Get risk predictions for pim object.
anoint.subgroups

Perform one-by-one subgroup analyses
show.formula.anoint

Show formula.anoint object
obo

Perform one-by-one (OBO) estimates of treatment-covariate interaction
prognostic.score

Prognostic scores for pim object.
anoint.fit

Fits and global tests of analysis of interaction models
show.anoint

Show anoint object
simsolvd

Simulated SOLVD-Trial data set
formula.anoint-class

Class "formula.anoint"
uim

Perform unrestricted multiple treatment-covariate interaction regression
print

Print coefficients of pim
pim

Fit proportional interaction model
pim.fit

Fit proportional interactions model
show

Show coefficients of pim
forest

Construct a forestplot from a anoint object
summary

Summary of anoint model fit.
plot

Prognostic response plot (PR-plot) for anoint class.
confint

Compute confindence intervals of pim model terms.