# Use univariate CAPA to analyse simulated data
library("anomaly")
set.seed(0)
x <- rnorm(5000)
x[401:500] <- rnorm(100, 4, 1)
x[1601:1800] <- rnorm(200, 0, 0.01)
x[3201:3500] <- rnorm(300, 0, 10)
x[c(1000, 2000, 3000, 4000)] <- rnorm(4, 0, 100)
x <- (x - median(x)) / mad(x)
res <- capa(x)
# view results
summary(res)
# visualise results
plot(res)
# Use multivariate CAPA to analyse simulated data
library("anomaly")
data("simulated")
# set penalties
beta <- 2 * log(ncol(sim.data):1)
beta[1] <- beta[1] + 3 * log(nrow(sim.data))
res <- capa(sim.data, type= "mean", min_seg_len = 2,beta = beta)
# view results
summary(res)
# visualise results
plot(res, subset = 1:20)
# Use PASS to analyse simulated mutivariate data
library("anomaly")
data("simulated")
res <- pass(sim.data, max_seg_len = 20, alpha = 3)
# view results
collective_anomalies(res)
# visualise results
plot(res)
# \donttest{
# Use BARD to analyse simulated mutivariate data
library("anomaly")
data("simulated")
bard.res <- bard(sim.data)
# sample from the BARD result
sampler.res <- sampler(bard.res, gamma = 1/3, num_draws = 1000)
# view results
show(sampler.res)
# visualise results
plot(sampler.res, marginals = TRUE)
# }
Run the code above in your browser using DataLab