library(anomo)
# 1. Compute MCCIs for main or moderation effects-----
# 1.1. Compute MCCIs for one main or moderation effect from one study
myci <- mcci(d = .1, se = .02); myci$out
# 1.2 Compute MCCIs for differences in two main (or moderation) effects
myci <- mcci(d = c(0.1, 0.15), se = c(.02, 0.01)); myci$out
# 1.3 Compute MCCIs for differences across five main (or moderation) effects
myci <- mcci(d = c(0.10, 0.15, 0.20, 0.25, 0.30),
se = c(0.01, 0.01, 0.02, 0.02, 0.03))
myci$out
# 2. Compute MCCIs for mediation effects
# 2.1. Compute MCCIs for an estimated mediation effect
myci <- mcci(d = c(.1, 0.15), se = c(.02, 0.01), mediation = TRUE)
myci$out
# 2.1. Compute MCCIs for differences in two mediation effects
myci <- mcci(d = c(0.30, 0.50, 0.33, 0.55),
se = c(0.02, 0.01, 0.02, 0.03), mediation = TRUE)
myci$out
# 3. Explicitly specify other parameters
myci <- mcci(d = .05, se = .02, eq.bd = 0.1) # equivalence bounds
myci <- mcci(d = .05, se = .02, xlim = c(-0.15, 0.15)) # Range of x-axis
Run the code above in your browser using DataLab