betabin
) or negative-binomial models (negbin
).## S3 method for class 'glimML':
anova(object, \dots)
print
function.anova
method for models of formal class anova.glm
, AIC
data(orob2)
# likelihood ratio test for the effect of root
fm1 <- betabin(cbind(y, n - y) ~ seed, ~ 1, data = orob2)
fm2 <- betabin(cbind(y, n - y) ~ seed + root, ~ 1, data = orob2)
anova(fm1, fm2)
Run the code above in your browser using DataLab