## Backward algorithm for standard HMMs:
## The dishonest casino example from Durbin et al (1998) chapter 3.2
states <- c("Begin", "Fair", "Loaded")
residues <- paste(1:6)
### Define the transition probability matrix
A <- matrix(c(0, 0, 0, 0.99, 0.95, 0.1, 0.01, 0.05, 0.9), nrow = 3)
dimnames(A) <- list(from = states, to = states)
### Define the emission probability matrix
E <- matrix(c(rep(1/6, 6), rep(1/10, 5), 1/2), nrow = 2, byrow = TRUE)
dimnames(E) <- list(states = states[-1], residues = residues)
### Build and plot the HMM object
x <- structure(list(A = A, E = E), class = "HMM")
plot(x, main = "Dishonest casino HMM")
data(casino)
backward(x, casino)
##
## Backward algorithm for profile HMMs:
## Small globin alignment data from Durbin et al (1998) Figure 5.3
data(globins)
### Derive a profile hidden Markov model from the alignment
globins.PHMM <- derivePHMM(globins, residues = "AMINO", seqweights = NULL)
plot(globins.PHMM, main = "Profile hidden Markov model for globins")
### Simulate a random sequence from the model
suppressWarnings(RNGversion("3.5.0"))
set.seed(999)
simulation <- generate(globins.PHMM, size = 20)
simulation ## "F" "S" "A" "N" "N" "D" "W" "E"
### Calculate the full (log) probability of the sequence given the model
x <- backward(globins.PHMM, simulation, odds = FALSE)
x # -23.0586
### Show dynammic programming array
x$array
Run the code above in your browser using DataLab