Returns an object of class “aplms”, a list with following components.
- formula
the formula object used.
- family
the family object used.
- npc
the npc object used.
- Knot
the Knot object used.
- lam
the lam object used.
- rdf
Degrees of freedom: n - q - p - 1.
- VAR_F
Estimate the asymptotic covariance matrix for the gamma parameters.
- basis
The basis to be used for each non parametric covariate.
- WALD_f
The summary table of the Wald statistics.
- summary_table_phirho
The summary table of the rho and phi parameters.
- N_i
Basis functions.
- f
Estimated gamma parameters.
- Dv
Dv values for the symmetric error.
- Dm
Dm values for the symmetric error.
- Dc
Dc values for the symmetric error.
- Dd
Dd values for the symmetric error.
- delta
delta_i for the symmetric error.
- LL_obs
Observed information matrix of the fitted model.
- loglike
The estimated loglikelihood function of the fitted model.
- total_df
The total effective degree of freedom of the model.
- parametric_df
The degree of freedom of the parametric components.
- npc_df
The effective degree of freedom of the non parametric components.
- AIC
Akaike information criterion of the estimated model.
- BIC
Bayesian information criterion of the estimated model.
- AICC
Corrected Akaike information criterion of the estimated model.
- GCV
The generalized cross-validation (GCV).
- yhat
The fitted response values of the model.
- muhat
The fitted mean values of the model.
- residuals_y
The response residuals
- residuals_mu
Raw (Ordinary) residuals: \(y_t - (\textbf{x}_i^\top\beta + f_1(t_{i1}) + \ldots + f_k(t_{ik}))\)
- data
the data object used.
- this.call
the function call used.